
Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Database proxies in Perl

Bernd Ulmann
ulmann@vaxman.de

IT-Symposium 2007
16th April – 20th April 2007

Nuremberg

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Introduction

About two years ago I ported Germany’s largest vegan recipe
database from a LINUX system running MySQL and Apache
to an OpenVMS system (a VAX-7820) running RDB and the
WASD web server.

During this port several severe problems were encountered
which eventually led to the development of a database proxy
written in Perl which not only solved these problems but
proved to be a very useful tool in a variety of other situations
as well1.

Those initial problems which led to the decision to use a three
tier architecture involving a proxy were:

1I would like to thank my friend Thomas Kratz who did most of the work
described in the following.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Intoduction

1 The initial overall response time of the system comprised of
RDB, several CGI-scripts written in Perl and the WASD server
was poor on the VAX.
The response times got somewhat better by using the RTE feature

of the WAS server thus allowing a memory resident Perl interpreter

(this eventually led to a performance gain of 3 to 5).

2 Concurrent accesses sometimes led to mysterious crashes in
the database interface module used to access RDB from
within a Perl program.
It turned out that this problem was buried deep in the interface

routines and could not be solved easily. Crashes only occured during

simultaneous connects to the database – serialized connects always

worked fine.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Employing a proxy

The frequent crashes forced an access method which allowed
to serialize database connects and accesses in order to prevent
these crashes.

Something like this can be done easily using a so called Proxy:

”A proxy server is a computer that offers a computer . . . service to

allow clients to make indirect . . . connection to other . . . services.”2

What was needed was a proxy which accepts connections and
request from the CGI scripts forming the web interface of the
recipe database. These requests will be serialized and routed
to the central database of the system. In addition to this, the
proxy might cache results read from the database so many
requests may be handled without any database access at all
after some startup time.

2Source: Wikipedia
Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

System overview

(serializing and caching)

@
@

@
@

@

�
�

�
�

�

Client 1 Client 2 Client n

Database

Proxy

�
�

�
�

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Why Perl?

It was decided to use the programming language Perl to implement
the proxy due to a couple of reasons:

1 Thomas and I really like Perl!

2 Perl is a mighty programming language with very efficient
methods for manipulating data and there are countless
modules simplifying database accesses,
TCPIP-communication, etc.

3 The availability of a hash as a basic datastructure makes the
implementation of caching mechanisms very simple.

4 Perl is readily available for nearly every platform, including
OpenVMS.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Client/proxy communication

The client and proxy communicate by transmitting complete Perl
datastructures (hashes) using sockets. This has the advantage that
no impedance mismatch between client and server occurs and
manipulating requests and data can be done in a transparent and
natural way.
A typical request sent from a CGI-script to the proxy may look like
this (it is a hash with three keys):

Example request

{
SELECT => ’SELECT DESCRIPTION FROM RECIPIES’,
ALIAS => ’RECIPES PRODUCTION’,
KEEP => 1,

}

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Structure of a request

A request like this consists of three parts:

1 The SQL-statement to be executed or satisfied by a cache
access. The key of the hash element containing the actual
statement determines its type (SELECT, UPDATE, DELETE).

2 An alias pointing to the desired database – this allows a single
proxy server to hold several connections to different databases
at once while every client selects the database it wants to
query.

3 An optional KEEP-clause which controls the cache invalidation
mechanism as will be described later.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Transmitting a request

To transmit such a request to the proxy the client program makes
use of the freeze function from the Storable module to pack
the hash containing the request and send it to a socket in base-64
encoded format:

Transmitting a request

print $sock encode base64(nfreeze(
{

$stmt type => $stmt,
ALIAS => ’RECIPES PRODUCTION’,

}
), ’’,), "\n";

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Receiving a request

The server reads this base-64 data stream from the socket and
recreates the datastructure like this:

Receiving a request

my $request ref = eval {thaw(decode base64($raw))};

$request ref is now a reference to an exact copy of the
datastructure sent by the client and may be used in the following
steps in a native way.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Transmitting the result data set

Sending the data set resulting from a client’s request is a bit more
tricky than sending the request:

This is due to the fact that a result data set may easily exceed
several 100 kB in size which can not be sent through a socket
in a single step.

Therefore it is necessary to split the data set to be
transmitted into smaller chunks and send these to the client
which, in turn, has to reassemble these chunks into the final
result data set.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Transmitting the result data set

Assuming that $response is a scalar containing the data to be
sent from the proxy to the client, while $chunk size contains the
maximum size of chunks, the transmission is done like this ($eod
holds some character sequence denoting the end of a transmission):

Transmitting the result data set

print $sock $, "\n"
for unpack("A$chunk size" x (int(length($response) /

$chunk size) + 1), $response);

print $sock $eod, "\n";

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Receiving the result data set

Receiving the data set sent from the proxy to the client is easy:

Receiving the result data set

my $buf;
do {

$buf .= <$sock>;
} until $buf =∼ s/$eod$//m;

my $response = eval {thaw(decode base64($buf))};

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Operation of the proxy

The main part of the proxy is an endless loop waiting for incoming
packets on the socket of the proxy.
Whenever a request is received by the proxy the following actions
occur:

If it is a SELECT-statement, the whole statement will be used
as a key to a cashing hash. If there is a corresponding entry in
the hash, the proxy will return this entry without actually
querying the database.

A DELETE-statement will invalidate all entries in the cache
having keys containing references to one or more of the tables
specified in the DELETE-statement.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Operation of the proxy

An UPDATE-statement normally has the same effect as a
DELETE-statement, i.e. it will flush all possibly affected cache
entries.
Since there are situations where such a behaviour is
undesirable, it is possible to influence this mechanism by
specifying an additional entry in the request hash sent from
the client to the proxy. If there is an entry KEEP with an
associated true value, the corresponding UPDATE-statement
will be performed without flushing any cache entries at all.
This is a very useful feature in cases where, for example, only
some counters will be incremented without affecting any vital
information in the database.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Operation of the proxy

Since only UPDATE- and DELETE-statements will force the proxy to
clear any cache entries, there is some danger of hitting the allowed
maximum memory size for a process when performing mostly
SELECT-statements.
To avoid this, the proxy will scan its cache in regular (configurable)
intervals for entries which have not been accessed for a longer
period than some (also configurable) threshold.
Using this mechanism the proxy will only hold entries in its cache
which are quite likely to be used while seldom used data will be
flushed after a while.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Experiences

The speedup effect resulting from using this proxy is dramatic:
A typical request to generate the category selection list for the
recipe database web application takes about 3.2 seconds using
RDB without the proxy.
Using the proxy the very same request needs 3.52 seconds to
complete – every following request of this type takes only 0.34
seconds.
The same speedup by a factor of ten can be observed with other
requests.
The following slide shows some process information about the
proxy after a run time of nearly 100 days:

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Experiences

SH PROC

18-MAR-2007 User: HTTP$NOBODY Process ID: 20223090
Node: FAFNER Process name: "BATCH 743"

Accounting information:
Buffered I/O count: 45803428
Peak working set size: 131072
Direct I/O count: 206717
Peak virtual size: 213000
Page faults: 147660
Elapsed CPU time: 0 07:05:57.47
Connect time: 94 14:58:22.41

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Additional benefits

Using a proxy process as the central hub in a multi user database
application brings some additional benefits which have not been
mentioned already:

The central position of the proxy allows the efficient
implementation of security relevant checks. A prime example
for this is the increasing amount of SQL-injections
encountered in many database applications offering a web
interface. Tainted SQL requests like those resulting from
injection attempts may be filtered out easily using the proxy.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Additional benefits

In addition to this, the central role of the proxy makes the
generation and extraction of detailed statistical data quite
easy. A proxy like the one described above may generate
statistical data on the fly, giving near realtime information
about the usage of complex database applications.

Since the proxy can hold multiple connections to different
databases it can be used to harmonize the interface visible to
the client processes. This became most obvious while using a
mixture of MySQL and RDB for which at least the connection
methods differ substantially.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Fazit

The use of a (still simple) database proxy like the one described above
has shown to be very fruitful:

1 On the system used, a VAX-7820, an overall speedup by a factor of
10 was observed.

2 The price for this was some CPU overhead which was more than
compensated by the decreased amount of database requests actually
being performed. Only the memory consumption of the proxy has to
be taken into account – a working set smaller than 131072 pages
has shown to be suboptimal.

3 The harmonized call interface for various databases has proven to
be a valuable tool since it allows easy migration between different
databases.

4 The possibility of security checks in the proxy will be explored in the
near future due to an increasing amount of SQL injection attempts
from malicious internet users.

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

Intro A proxy Communication The proxy Experiences Benefits Fazit Additional information

Additional information

The vegan recipe database which initially triggered the
development of the database proxy described in this talk is the
heart of
http://www.veganwelt.de
and may be reached directly at
http://fafner.dyndns.org/∼mitsam/cgi-bin/rz1.pl
If you have questions, comments or would like to receive a
copy of the proxy server, the author may be reached at
ulmann@vaxman.de

Bernd Ulmann ulmann@vaxman.de

Database proxies in Perl

	Introduction
	Solving these problems with a proxy
	Client/proxy communication
	The proxy
	Experiences
	Additional benefits
	Fazit
	Additional information

