
Design and Implementation

of an

Array Language

Bernd Ulmann

V. 1.1, 03-AUG-2013

To my beloved wife Rikka.

Acknowledgments

This book would not have been possible without the support and help of many people.
First of all, I would like to thank my wife Rikka Mitsam who never complained about
the many hours I spent writing instead of being with her and did a lot of proofreading.

I am also greatly indebted to Thomas Kratz who did most of the implementation of
the Lang5-interpreter and the Array::DeepUtils module.

I am particularly grateful for the support and help of Jens Breitenbach and Hans

Franke show did a magnificent job at proof reading and made many valuable sugges-
tions which greatly enhanced this booklet.

In addition to that, I would like to thank Patrick Hedfeld for countless fruitful discus-
sions about languages in general and programming languages and Lang5 in special. He
also did a terrific job with writing the Lang5-Redbook. In addition to that he spotted
many flaws and faults in this booklet which were corrected accordingly.

©Bernd Ulmann

Contents

1 Introduction 1

1.1 Preliminaries. 1

1.2 Array languages . 1

2 The design of Lang5 7

2.1 Reverse Polish notation . 7

2.2 Dynamic typing . 9

2.3 Data structures . 10

3 Installing and running Lang5 13

3.1 Installation. 13

3.2 Starting the interpreter . 15

3.3 First steps . 17

4 Lang5 basics 21

4.1 Getting started . 21

4.2 Basic data structures . 22

4.3 Language elements. 24
4.3.1 Operators . 24
4.3.2 Functions . 25
4.3.3 Control instructions . 25
4.3.4 I/O instructions . 26
4.3.5 Words . 26
4.3.6 Variables . 28

4.4 Dressed data structures . 28

5 The Lang5 dictionary 33

5.1 Stack manipulation and display. 33
5.1.1 .. 33
5.1.2 .s . 34
5.1.3 clear . 34
5.1.4 depth . 34

ii CONTENTS

5.1.5 drop . 35
5.1.6 dup . 35
5.1.7 2dup . 35
5.1.8 ndrop . 35
5.1.9 over . 36
5.1.10 pick . 36
5.1.11 roll . 36
5.1.12 roll . 37
5.1.13 rot . 37
5.1.14 swap . 37

5.2 Array manipulation and generation . 38
5.2.1 append . 38
5.2.2 apply . 38
5.2.3 collapse . 39
5.2.4 compress . 39
5.2.5 dreduce . 39
5.2.6 dress . 39
5.2.7 expand . 40
5.2.8 extract . 40
5.2.9 grade . 40
5.2.10 in . 41
5.2.11 index . 41
5.2.12 iota . 41
5.2.13 join . 42
5.2.14 length . 42
5.2.15 outer . 42
5.2.16 reduce . 43
5.2.17 remove . 43
5.2.18 reshape . 44
5.2.19 reverse . 45
5.2.20 rotate . 45
5.2.21 scatter . 45
5.2.22 select . 46
5.2.23 shape . 46
5.2.24 slice . 46
5.2.25 split . 48
5.2.26 spread . 48
5.2.27 strip . 48
5.2.28 subscript . 48
5.2.29 transpose . 49

5.3 File handling . 49
5.3.1 close . 50
5.3.2 eof . 50
5.3.3 fin . 50
5.3.4 fout . 50
5.3.5 open . 50

iii

5.3.6 read . 50
5.3.7 STDIN, STDOUT, STDOUT . 51
5.3.8 unlink . 51
5.3.9 slurp . 51

5.4 Mathematical, logical and comparison operations . 51
5.4.1 +, -, *, / . 52
5.4.2 %, ** . 52
5.4.3 &, |, ∧ . 52
5.4.4 ==, !=, >, <, >=, <= . 52
5.4.5 === . 52
5.4.6 eq, ne, gt, lt, ge, le . 52
5.4.7 eql . 53
5.4.8 <=>, cmp . 53
5.4.9 ||, && . 53
5.4.10 ! . 53
5.4.11 ? . 53
5.4.12 atan2 . 53
5.4.13 abs . 53
5.4.14 amean . 53
5.4.15 and . 53
5.4.16 cmean . 54
5.4.17 complex . 54
5.4.18 cos . 54
5.4.19 defined . 54
5.4.20 distinct . 54
5.4.21 e . 54
5.4.22 eps . 54
5.4.23 exp . 55
5.4.24 gcd . 55
5.4.25 gmean . 55
5.4.26 hmean . 55
5.4.27 hoelder . 55
5.4.28 im . 55
5.4.29 int . 55
5.4.30 intersect . 55
5.4.31 max . 56
5.4.32 median . 56
5.4.33 min . 56
5.4.34 neg . 56
5.4.35 not . 56
5.4.36 or . 56
5.4.37 polar . 56
5.4.38 prime . 57
5.4.39 qmean . 57
5.4.40 re . 57
5.4.41 sin . 57

iv CONTENTS

5.4.42 sqrt . 57
5.4.43 subset . 57
5.4.44 tan . 58
5.4.45 union . 58

5.5 Control structures . 58
5.5.1 break . 58
5.5.2 do-loop . 58
5.5.3 if-else-then . 58

5.6 Miscellaneous functions and words . 58
5.6.1 execute . 58
5.6.2 exit . 59
5.6.3 gplot . 59
5.6.4 help . 59
5.6.5 load . 59
5.6.6 panic . 60
5.6.7 save . 60
5.6.8 system . 61
5.6.9 type . 61
5.6.10 ver . 62

5.7 Variable and word handling . 62
5.7.1 .ofw . 62
5.7.2 .v . 62
5.7.3 del . 62
5.7.4 dump . 62
5.7.5 eval . 63
5.7.6 explain . 63
5.7.7 set . 63
5.7.8 vlist . 63
5.7.9 wlist . 64

6 Programming examples 65

6.1 Fibonacci numbers . 65

6.2 Throwing dice . 66

6.3 Cosine approximation . 67

6.4 List of primes . 67

6.5 Printing a sine curve . 68

6.6 Sorting external data . 69

6.7 Matrix-vector-multiplication . 69

6.8 Sum of cubes . 70

6.9 Perfect numbers . 71

v

6.10 Mandelbrot set . 71

6.11 Game of Life . 73

6.12 Ulam spiral . 76

7 Interpreter anatomy 79

7.1 The wrapper lang5 . 79

7.2 Parsing . 80

7.3 execute . 84

7.4 Built-ins etc. 84

7.5 Stacks . 86

7.6 Local stacks . 87

7.7 Questions . 87

8 Extending Perl 89

A A simple arithmetic expression parser 91

B Special purpose variables 95

C The standard library 97

D The mathematical library 101

E Solutions to selected exercises 109

Bibliography 115

Index 117

1 Introduction

1.1 Preliminaries
There is a plethora of introductory texts for various programming languages filling
countless shelves but there are only a few texts covering the basic aspects of the design
and implementation of a programming language. One reason for this is that most pro-
gramming languages have grown to be far too complex to be usable for teaching their
inner workings. Therefore this book first introduces a rather simple stack based array
language called Lang5, which has been developed explicitly to serve as an example for
introductory lectures about programming languages and interpreter design.

All of the source code used and described in the following is available for free
at http://lang5.sourceforge.net and should be downloaded and installed on a
LINUX, Mac OS X, Windows or even OpenVMS based computer since the remainder
of this book makes heavy use of the interpreter and solving the exercises requires a
Lang5-interpreter at hand.

It is further assumed that the reader already has some programming experience, ide-
ally with the C and Perl, and knows about nested data structures built from arrays
and hashes since this is not an introductory text about programming as such.

User input is always denoted by red color in the following examples to distinguish it
clearly from output generated by the interpreter, the operating system etc.

1.2 Array languages
First of all, what is a so-called array language? Most languages, some of which even
became part of our everyday vocabulary, like C, its derivatives C++ and C#, Java, Perl,
Python etc. are either imperative1 or object oriented languages as the “TIOBE Program-
ming Community Index for April 2013”, shows: The ten most used programming lan-
guages are either imperative (C being the most widely used language) or object ori-
ented languages.2

Languages employing other programming paradigms like so-called functional or array
languages are, unfortunately, used only rarely according to TIOBE. LISP, for example,
is on position 13 being used in 0.095% of the projects taken into account while APL,

1Also called von Neumann languages.
2In April 2013, the top ten programming languages listed by TIOBE (see http://www.tiobe.com/ in-

dex.php/content/paperinfo/tpci/index.html) were C, Java, C++, Objective-C, C#, PHP, (Visual) Ba-

sic and Python.

2 1. INTRODUCTION

the archetypal array programming language, has rank 39, being used in 0.222% of the
projects.

This is a pity since both paradigms offer methods and chances for programming that
exceed those of the more traditional languages taking up the first ranks. Especially
array programming languages are highly powerful and yet extremely underestimated.

The idea of array languages is an old one: In the late 1950s, Ken Iverson, a mathemati-
cian who was not satisfied with the traditional form of mathematical notation, set out
to develop a new notation while being an assistant professor in Harvard.3 In 1960 Ken

Iverson began working for IBM where he met Adin Falkoff who became interested in
this new notation. He extended his notation to a degree which made it possible to be
used for the description of algorithms and computer systems in general.4

Internally, this language was known as Iverson’s Better Math but IBM did not like that
name for obvious reasons, thus a new name was needed. In the following this seminal
language became known as APL, short for A Programming Language. This name was
used officially for the first time in the title of [Iverson 1962] where it was still used as
a method for “interpersonal communication”.5

The first noteworthy aspect of APL is its unusual character set which was (and often
still is) considered a major obstacle as the following question asked by R. A. Brooker

shows:6

“Why do you insist on using a notation which is a nightmare for typist and
compositor?”

This question was even more important back in the early 1960s since there were no
graphic display capable of displaying the special APL characters available. IBM over-
came this problem with the introduction of the so-called Selectric Typewriter which
could use special character balls containing the characters required for the APL sys-
tem. Despite this particular nuisance, the extreme consistency and efficiency of APL
quickly led to the development of interpreters for this language.7

APL encourages a rather unique style of programming. On a first glance APL programs
are quite unreadable for the uninitiated but as soon as one gets used to its special char-
acter set and its basic ideas, it turns out to be one of the most powerful programming
languages ever. Especially its array features which make APL an array language lead to
unusual and often astonishingly short solutions compared with other programming
languages.8

3See [Janko 1980].
4The most famous example for a computer system’s description in this notation is that of the IBM /360

architecture in 1964 which is described in [Falkoff et al. 1964].
5See [Janko 1980][p. 1].
6See [McDonnel 1981][p. 11].
7

Hellermann implemented an interpreter supporting a subset of APL on the IBM 1620 in 1963; an APL

system running in batch mode was developed for the IBM 7090 mainframe in 1965 by M. L. Breed and P.

S. Abrams who also implemented an APL system running under an experimental time sharing system on an
IBM 7090 (see [Janko 1980][p. 1]).

8This is, by the way, a good example of how notation and languages shape the way of problem description
and solving. Ken Iverson’s famous publication [Iverson 1963] is a must read in this context.

1.2. ARRAY LANGUAGES 3

APL in its very nature is an interpreter language with an unusually high degree of
interactivity. It features dynamic typing, a feature also found in today’s dynamic lan-
guages like Perl, Python etc., but its main feature is its use of the vector as its basic
data structure. Because of this, APL programs seldomly use (explicit) loops, conditional
execution and the like since wherever possible vector and matrix operations are em-
ployed.

The following example gives an impression of the power resulting from using vectors
as basic data structures: The sum

∑100
i=1 i is to be computed. Using a typical imperative

language like C this could be accomplished as follows:

1 #include <stdio.h>

2

3 int main()

4 {

5 int sum, i;

6

7 for (i = sum = 0; i <= 100; sum += i++);

8

9 printf("%d\n", sum);

10 return 0;

11 }

As straightforward as such a solution may seem, only a small portion of this program
(a single line, in fact) deals with the actual problem of computing the sum of all natural
numbers ≤ 100. The remaining lines deal with variable declaration, printing the result
and terminating the program graciously. An APL solution of the same problem might
look like this: +/ι100

APL programs are read from right to left, so this program applies the ι (iota) function to
the scalar 100 which yields a vector with unit stride containing 100 elements. The next
part is tricky: Using the reduction operator / the dyadic operator + is applied between
each two successive elements of this vector thus yielding 1+2+3+...+99+100. This is
typical idiom of an array language which saves many of the explicit loops required by
other programming languages.

The next (and last) APL example9 is more complicated but shows even more of the
power of array languages. A list of prime numbers between 2 and 100 is to generated.
A first, very simple, straightforward solution in C might look like this:

1 #include <stdio.h>

2

3 #define END 100

4

9Much more detailed information about APL can be found in [Iverson 1962], [Gilman et al. 1970],
[Iverson 1963] etc.

4 1. INTRODUCTION

5 int is_prime(int value)

6 {

7 int divisor;

8

9 if (!(value % 2))

10 return value == 2;

11

12 for (divisor = 3; divisor * divisor <= value; divisor += 2)

13 if (!(value % divisor))

14 return 0;

15

16 return 1;

17 }

18

19 int main()

20 {

21 int i;

22

23 for (i = 2; i <= END; i++)

24 if (is_prime(i))

25 printf("%d ", i);

26

27 printf("\n");

28 return 0;

29 }

A function is prime() is defined which tests be successive division if a number is
prime. Using this function within a loop a list of prime numbers is printed. As simple
as this approach is, a substantial amount of code is still not devoted to the problem
itself but is owed to the language. A more elegant solution in C could implement the
sieve of Eratosthenes which is based on a unit stride vector starting with the value
2. In the first run, the leftmost vector element must be prime, so all of its multiples
can be marked as non-prime in the vector until the last element of the vector has been
reached. The next loop will then determine the next element from the left which has
not been marked as being non-prime. All multiples of this element will be marked in
this run etc. In the end the vector will contain a list of prime numbers. A typical C
implementation of this algorithm might look as follows:

1 #include <stdio.h>

2

3 #define END 100

4

5 int main()

6 {

7 int i, j, v[END + 1];

8

1.2. ARRAY LANGUAGES 5

9 for (i = 2; i <= END; v[i++] = 1); /* Initialize the array */

10

11 /* Successively mark all non-prime elements: */

12 for (i = 2; i * i <= END; i++)

13 for (j = 2; v[i] && i * j <= END; v[i * j++] = 0);

14

15 /* Print the list of primes generated by this operation: */

16 for (i = 2; i <= END; i++)

17 if (v[i])

18 printf("%d ", i);

19

20 printf("\n");

21 return 0;

22 }

This solution is much more elegant than the simple trial divisions shown before, but
the algorithm itself is rather cluttered by the language itself. Solving this problem in
an array language like APL might look like this: (∼ E ∈ E ◦ .× E)/E← 1 ↓ ιE← 100

How does this work? Reading from right to left, a scalar variable E is set to the value
100. Applying the ι function to E yields a unit stride vector containing 100 elements:
(1, 2, ..., 100). Dropping the first element of this vector by 1 ↓ in turn yields a
vector (2, 3, ..., 100) which is then stored again in the variable E.

The next step is building a matrix by computing the outer product of two of these
vectors: E ◦ .× E thus yields a matrix of the form

4 6 8 10 . . .
6 9 12 15 . . .
8 12 16 20 . . .

10 15 20 25 . . .
...

...
...

...
. . .

which obviously does not contain any prime numbers at all since every element of this
matrix is the product of at least two prime numbers. By applying E ∈ to this matrix,
a binary vector is generated which corresponds to the vector E in that it contains a 1

at every place where E contains a non-prime number and a 0 otherwise. Inverting this
vector by ∼ yields a binary vector containing a 1 at every location corresponding to a
prime number in E and a 0 everywhere else.

The last step is the selection of all elements from the vector E based on this selection
vector yielding a list of primes between 2 and 100.10

The most remarkable thing about this program is the observation that no explicit loops
and only a minimal amount of variables were required. This is a characteristic feature

10As elegant as this solution is, it should be noted that a naive implementation (which holds true for
Lang5) requires excessive amounts of memory and CPU time. So for practical applications it is often neces-
sary to decide between elegance and performance.

6 1. INTRODUCTION

of all array programming languages yielding terse and very expressive programs. Of
course, there is much more about array programming and APL but these two examples
might suffice in showing some of the power of the array programming paradigm. The
following chapter describes the basic design of Lang5, the simple stack based array
programming language used throughout the remaining portions of this book.

2 The design of Lang5

2.1 Reverse Polish notation
Most programming languages use an algebraic notation style which allows expressions
like

z += dx * (y + 2 * (ya + yb) + yc) / 6.

Typically, the evaluation of such expressions is performed in a left-to-right fashion
and takes operator precedences into account which seems useful and natural but often
unclear or erroneous assumptions about these operator precedences on the side of the
programmer turn out to be the source of either unnecessary parentheses or of plain
programming errors. Accordingly, Ken Iverson decided to abandon this scheme for
his APL system and employ a strict right-to-left scheme of evaluation. This seems odd
at first sight but it turns out that expressions written like this tend to be shorter and
not as error-prone as those written in the traditional style. Evaluating a polynomial
(a,b,c,d,e)

∏
x using the Horner scheme looks like

y = a + x * (b + x * (c + x * (d + x * e)))

when written as a traditional algebraic expression. Using Iverson’s notation it is sim-
plified to

y = a + x * b + x * c + x * d + x * e.

This is due to the fact of right-to-left evaluation. The first term is thus xe, followed by
d + xe, which is then multiplied by x again yielding x(d + xe) etc.1

Still another notation was developed by the Polish logician and philosopher Jan

Łukasiewicz.2 He created what became known as Polish notation or prefix notation in
which an operator always precedes its operands. If the arity of all operators is fixed,
this style of notation does not require any parentheses at all since the precedence
of operations is solely determined by their respective position in an expression.3 A

1The implementation of a parser for algebraic expressions working in APL-style from right to left which
is based on [Holub 1985][pp. 165 ff.] is shown in appendix A.

212/21/1878–02/13/1956
3As Jens Breitenbach points out, the Polish notation is more natural from a mathematical point of view

than the common infix notation, since arithmetic operations are represented functions taking two argu-
ments: p : N×N→N, (x,y) 7→ p(x,y) := x+ y

8 2. THE DESIGN OF LANG5

variant of this notation, called reverse Polish notation, or RPN for short, was devel-
oped independently several times starting with [Burks et al. 1954]. The programming
languages Forth, developed by Charles H. Moore beginning in the late 1950s is
completely based on RPN as were most of HP’s pocket calculators. RPN systems are
based on a so-called stack, a data-structure based on a list which can be extended
by pushing elements onto it. Retrieving elements is done by an operation called pop
which removes one element from the end of the stack and returns this element. Stacks
are ubiquitous in modern computing as they are used to store parameters, local vari-
ables and return addresses for subroutine or function calls. Therefore most modern
processor architectures feature at least basic stack operations like push and pop. It is
only in programming languages like Forth or Lang5 that stacks are exposed to the
programmer.

Evaluating the polynomial shown above on an RPN system like a traditional HP pocket
calculator could be done by the following sequence of operations:

e x * d + x * c + x * b + x * a +

This would, in effect, first push e and x onto the stack, execute the binary multiplica-
tion operator *, which in turn removes the two topmost elements from the stack and
pushes the result of the multiplication back onto the stack. This value is then incre-
mented by d, multiplied by x and so on.

When designing a programming language, the first thing to determine is the way in
which expressions should be written. Lang5 employs the RPN notation which has sev-
eral advantages: It is rather easily implemented in an interpreter or compiler and
programming in RPN-style turns out to be quite powerful. In addition to that, it is
especially useful to see the progression of a complex calculation. The following code-
example shows a simple RPN-calculator written in Perl:

1 use strict;

2 use warnings;

3

4 my @stack;

5

6 my %functions = (

7 ’.’ => sub { print pop(@stack), "\n"; },

8 ’+’ => sub { push(@stack, pop(@stack) + pop(@stack)); },

9 ’*’ => sub { push(@stack, pop(@stack) * pop(@stack)); },

10 ’-’ => sub { push(@stack, -(pop(@stack) - pop(@stack))); },

11 ’/’ => sub { push(@stack, 1 / (pop(@stack) / pop(@stack))); },

12);

13

14 while (my $input = <STDIN>)

15 {

16 $functions{$_} ? $functions{$_}->() : push(@stack, $_)

17 for (split(/\s+/, $input));

2.2. DYNAMIC TYPING 9

18 }

At its heart is the stack which is just a global array.4 The basic functions offered are
stored as subroutine references in a hash %functions. The user input is read from the
standard input channel and stored in the scalar variable $input. This line of input is
then split on white-space characters to yield individual tokens which are then either
used to execute a particular function or to push a value onto the stack.

If a token contains the name of a known operator or function, it is a valid key for the
hash %functions. In these cases, the subroutine addressed by this key is executed,
$functions{$ }->(), in all other cases the token is pushed onto the stack. Using this
simple program, an algebraic expression like 3 * 2 + 1 can be evaluated by entering
1 2 3 * + . – the single dot removes the topmost stack element and prints it to the
standard output.

Exercise 1:

1. Extend this simple RPN calculator by adding two binary operators for expo-
nentiation (**), modulo (%) etc.

2. Extend it by adding a unary operator ! for calculating factorials.

3. Implement some basic error checking to make sure that there are enough el-
ements on the stack for the various operations implemented. Ideally these
checking routines would be implemented in a general way – one for all bi-
nary operators etc. One approach to accomplish this would be to change the
hash %functions to a two-dimensional structure in which each function name
points to a two-element hash containing two keys code and type. The value
of code contains the reference to the actual routine performing the desired
operation while type contains information about the routine as being of type
unary, binary etc. This information could then be used to control a central
error checking routine.

Of these three methods, left-to-right and right-to-left evaluation of arithmetic expres-
sions and RPN the latter one was selected as the basis for Lang5.

2.2 Dynamic typing
Another basic aspect of programming languages is the question of whether to employ
static typing as found in C or to use dynamic typing as used by most dynamic pro-
gramming languages5 There is an ongoing discussion between proponents of these two

4Being an introductory example, no provision has been made for avoiding a global stack or error checking
etc.

5Also known as scripting languages.

10 2. THE DESIGN OF LANG5

paradigms. In static typing a variable gets a type like being an integer or float assigned
and will be capable of holding a value of this type only during its life-time. This has
several advantages – among others, it speeds up execution of programs since the type
of a variable is known in advance and does not have to be determined during run-time.
In addition to that, static typing allows a variety of programming errors to be catched
during compile-time.

Dynamic typing, on the other hand, offers a high degree of flexibility: Why should one
explicitly restrict a variable to holding only a single type of value while the executing
instance, normally an interpreter, knows best which type a variable contains at run-
time. The often expressed fear that this might open Pandora’s box and yield errors
hard to catch has not been proven over the years, instead, the use of languages using
dynamic typing often yields significant productivity gains compared with languages
based on a static typing concept.6

It was decided to use dynamic typing in Lang5. In effect, most of Perl’s dynamic typing
capabilities are used in Lang5 since the interpreter is written entirely in Perl. So a scalar
element on the stack can hold integer values, floating point numbers as well as strings.

2.3 Data structures
If it were just for the two characteristics of employing RPN in conjunction with dy-
namic typing, Lang5 would be nothing more than a slightly generalized Forth. Since
Lang5 was intended to be an array language, the RPN concept was extended in a way
that allows nested arrays to be pushed onto the stack and processed as whole data
structures. So the two basic data-structures employed by Lang5 are scalar values like
integers, floating point numbers, and strings, and nested arrays of arbitrary dimension
using scalars as their data elements. In this respect, Lang5 works quite like RPL, short
for Reverse Polish LISP, the programming language used in late HP pocket calculators
like the HP28 or HP48 and later models.

In Lang5 it is possible to push a nested data structure like the two-dimensional array1 2 3
4 5 6
7 8 9

onto the stack as

[[1 2 3] [4 5 6] [7 8 9]]

This, of course makes it necessary to extend the basic operators to work on whole
data-structures like this array instead of working on scalar values only. This is done
implicitly by the interpreter which traverses data-structures as necessary and applies
basic operators like +, * etc. in an element-wise fashion to corresponding elements of
such data-structures.

6See [Ousterhout 1998] and [Prechelt 2010].

2.3. DATA STRUCTURES 11

The following chapter describes the process of installing and running the Lang5-
interpreter which will be used throughout the remaining sections of this book. Fol-
lowing this, the language itself is introduced and described in detail.

3 Installing and running Lang5

3.1 Installation
The following section will describe the design and implementation of a simple ar-
ray programming language called Lang5. Most examples require access to a Lang5-
interpreter which can be installed easily on most operating systems.1 The only prereq-
uisite requirement is a Perl interpreter since the Lang5-interpreter itself is written in
Perl. If there is no Perl interpreter already installed on the destination system, this
should be done first.2

The easiest way to get started with Lang5 is to download the distribution kit lang5.zip
from http://lang5.sourceforge.net3 which can be unzipped to any suitable loca-
tion in the directory structure of the destination system. There is no need to install
Lang5 into a special location like /usr/local or something like that on a UNIX sys-
tem as the following example shows.4 Figure 3.1 shows the directory structure which
created by unzipping the Lang5-distribution kit.

1 $ cd

2 $ unzip ../Downloads/lang5.zip

3 Archive: lang5.zip

4 creating: lang5/

5 creating: lang5/doc/

6 inflating: lang5/doc/introduction.pdf

7 creating: lang5/examples/

8 inflating: lang5/examples/apple.5

9 inflating: lang5/examples/bargraph.5

10 inflating: lang5/examples/cantor.5

11 inflating: lang5/examples/cosine.5

12 inflating: lang5/examples/fibr.5

13 inflating: lang5/examples/fibr_apply.5

14 inflating: lang5/examples/fibr_unary.5

15 inflating: lang5/examples/gauss_factorial.5

16 inflating: lang5/examples/gauss_factorial_unary.5

17 inflating: lang5/examples/gol.5

1Currently supported are LINUX, Mac OS X, Windows and OpenVMS.
2Typical Perl distributions for most common operating systems can be obtained from

http://www.perl.org/get.html or http://www.activestate.com/activeperl.
3The direct link is https://downloads.sourceforge.net/project/lang5/lang5.zip.
4For a more permanent installation the PATH variable should be extended accordingly to include the

interpreter’s base directory.

14 3. INSTALLING AND RUNNING LANG5

18 inflating: lang5/examples/matrix_vector.5

19 inflating: lang5/examples/perfect.5

20 inflating: lang5/examples/prime.5

21 inflating: lang5/examples/prime_2.5

22 inflating: lang5/examples/sine_curve.5

23 inflating: lang5/examples/sort.5

24 inflating: lang5/examples/sort.data

25 inflating: lang5/examples/sum_of_cubes.5

26 inflating: lang5/examples/throw_dice.5

27 inflating: lang5/examples/ulam.5

28 inflating: lang5/INSTALL

29 inflating: lang5/lang5

30 inflating: lang5/lang5.vim

31 creating: lang5/lib/

32 inflating: lang5/lib/mathlib.5

33 inflating: lang5/lib/stdlib.5

34 creating: lang5/perl_modules/

35 creating: lang5/perl_modules/Array/

36 inflating: lang5/perl_modules/Array/DeepUtils.html

37 inflating: lang5/perl_modules/Array/DeepUtils.pm

38 extracting: lang5/perl_modules/Array/pod2htmd.tmp

39 extracting: lang5/perl_modules/Array/pod2htmi.tmp

40 creating: lang5/perl_modules/Lang5/

41 inflating: lang5/perl_modules/Lang5/String.pm

42 inflating: lang5/perl_modules/Lang5.pm

43 creating: lang5/perl_modules/Term/

44 creating: lang5/perl_modules/Term/ReadLine/

45 inflating: lang5/perl_modules/Term/ReadLine/Perl.pm

46 inflating: lang5/perl_modules/Term/ReadLine/readline.pm

47 inflating: lang5/README

48 $ cd lang5

49 $ chmod 755 lang5

50 $ ˜/lang5/lang5

51 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..

52 Trig..NT..

53 loading stdlib.5: Const..Misc..Stk..Struct..

54 lang5> exit

55 $

The installation on a Windows system is equally simple (provided that there is a Perl

interpreter already installed): The distribution kit lang5.zip can be unzipped to any
suitable location even something like C:\Temp\lang5. The interpreter is then started
simply from within a command window5 by typing perl c:\Temp\lang5\lang5.

5This can be opened by executing cmd.exe.

3.2. STARTING THE INTERPRETER 15

lang5/

+- lang5 The interactive interpreter wrapper.

+- lang5.vim Syntax highlighting for the vi.

+- perl_modules/

+- Array Contains the array functionality.

+- Lang5 Contains the string module.

+- Lang5.pm The main interpreter module.

+- Term/ Pure Perl ReadLine implementation.

+- INSTALL Installation information.

+- README Release information.

+- doc/ This directory contains some PDF files.

+- examples/ Examples written in lang5.

+- lib/ Contains libraries loaded at startup.

+- mathlib.5 A collection of mathematical user words.

+- stdlib.5 Miscellaneous additional word definitions.

Figure 3.1: Directory structure created by the Lang5-distribution kit

3.2 Starting the interpreter
In the simplest case the Lang5-interpreter is just started as shown above, but there are
many cases which require the use of so-called “qualifiers” which control the overall
behavior of the interpreter. The general format for calling the interpreter is as follows:

lang5 [<qualifier> [<qualifier> .. [<qualifier>] ..]] [file1 [file2 ...]]

file 1 etc. represent names of files containing Lang5-source code that is to be executed
by the interpreter. The available qualifiers are those listed below:

-b or --benchmark: By specifying this qualifier, the interpreter will print a list of all
called functions, operators and words ordered by the number of executions de-
scending.

-d or --debug level: This qualifier sets the debug level of the interpreter which is
useful mainly during development of the interpreter itself. Possible values are
TRACE, DEBUG, INFO, WARN, ERROR (this is the default value for this parameter),
FATAL. The last value generates the least amount of output while TRACE gener-
ates extremely detailed output and renders the interpreter mostly useless apart
for debugging due to the amount of output. lang5 -d TRACE would start the
interpreter in its trace mode where every tiny operation within the interpreter
itself is printed.

-e or --evaluate: Using this qualifier it is possible to evaluate a Lang5-expression
during startup of the interpreter and before loading any files containing Lang5-
source code. This is useful to place initial values onto the stack or to execute

16 3. INSTALLING AND RUNNING LANG5

so-called one-liners. This option forces the interpreter into batch mode:6

1 $ lang5 -e "1 2 + ."

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..

3 Trig..NT..

4 loading stdlib.5: Const..Misc..Stk..Struct..

5 3

6 $

-f or --format: By default, numerical values are printed by the Lang5-interpreter
with at least four places to ensure a pretty formatted output of nested arrays.
In cases where this default behavior is not suitable, the control string for all out-
put operations can be modified by this parameter. To have output values printed
with at least 15 places, the interpreter could be started as follows:

1 $ lang5 -format "%15s"

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..

3 Trig..NT..

4 loading stdlib.5: Const..Misc..Stk..Struct..

5 lang5> [1 2] .

6 [1 2]

-i or --interactive: When the interpreter is started without any file name speci-
fied on the command line, it will automatically enter interactive mode. If one or
more files containing Lang5-source code are specified, the interpreter will run in
batch mode by default, so it will execute the code and then quit. In cases where
files should be loaded and the interpreter should nevertheless run in interactive
mode, this can be forced by specifying this qualifier on the command line.

-n or --nolibs: By default, the interpreter loads all libraries located in the lib di-
rectory of the interpreter’s directory tree. Specifying this qualifier, loading these
libraries can be suppressed:

1 $ lang5

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..i

3 Trig..NT..

4 loading stdlib.5: Const..Misc..Stk..Struct..

5 lang5> exit

6

7 $ lang5 -n

8 lang5>

-sta or --statistics: The -statistics qualifier behaves quite like -benchmark

with the difference that the output will not be sorted by the number of calls
made to the various functions, operators and words.

6More than one -e-qualifier may be supplied at once. If there are any source code files specified on the
command line, they will be executed after the statements following -e have been executed.

3.3. FIRST STEPS 17

-ste or --steps: Setting this parameter to a positive integer value causes the inter-
preter to abort a running program after as many instructions have been executed
as specified by this value. This parameter is only useful in cases where some-
thing like a CGI-interface to Lang5 is being implemented to avoid overloading
the server due to things like endless loops etc. Normally this parameter will not
be necessary.7 In addition to limiting the number of instructions being executed
during an interpreter run, setting this value will automatically disable system
calls.

-t or --time: Specifying -t, the interpreter will print out the time consumed for each
line executed when running in interactive mode. When running in batch mode,
the total run time will be printed.

-v or --version: This qualifier will cause the interpreter to print out its version num-
ber before executing any program.8

-w or --width: Some commands are aware of the current terminal width which is set
to 80 by default. Using -w this width can be changed.

3.3 First steps
The very first example is the unavoidable hello-world-program written in Lang5. The
first example shows how to write and run a hello-world in interactive mode:

1 $ lang5

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..

3 Trig..NT..

4 loading stdlib.5: Const..Misc..Stk..Struct..

5 lang5> "Hello world!\n" .

6 Hello world!

7 lang5> exit

Now create a file called hello world.5 with your preferred text-editor.9 This file
should contain only one line containing the program typed in in the above example.
This program is the executed by running the Lang5-interpreter in batch mode which
is entered automatically since a file name is specified when starting the interpreter:

1 $ cat > hello_word.5

2 "Hello world!\n" .

3 $ lang5 hello_word.5

4 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..

5 Trig..NT..

7Just loading the standard- and mathematical-library requires a bit more than 1000 steps.
8The libraries are loaded before printing the version number.
9The UNIX shell command cat is far from being an editor but is useful in short examples like this.

18 3. INSTALLING AND RUNNING LANG5

6 loading stdlib.5: Const..Misc..Stk..Struct..

7 loading hello_word.5

8 Hello world!

9 $

Now let us execute some of the examples supplied with the Lang5-interpreter:

1 $ lang5 -b lang5/examples/sine_curve.5

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..Trig..NT..

3 loading stdlib.5: Const..Misc..Stk..Struct..

4 loading lang5/examples/sine_curve.5

5 *

6 *

7 *

8 *

9 *

10 *

11 *

12 *

13 *

14 *

15 *

16 *

17 *

18 *

19 *

20 *

21 *

22 *

23 *

24 *

25 *

26 ===

27 Statistics:

28 ---

29 execute word : 572 ! Function : 438 !

30 Push data : 275 ! Binary : 130 !

31 + : 64 ! If : 63 !

32 compress : 63 ! Word definitions : 61 !

33 Max. stack depth : 50 ! roll : 42 !

34 swap : 42 ! _roll : 42 !

35 dup : 42 ! expand : 42 !

36 type : 42 ! . : 39 !

37 ne : 21 ! append : 21 !

38 eq : 21 ! < : 21 !

39 depth : 21 ! join : 21 !

40 reshape : 21 ! Unary : 4 !

41 * : 2 ! / : 1 !

3.3. FIRST STEPS 19

42 int : 1 ! iota : 1 !

43 print_dot : 1 ! sin : 1 !

44 ---

45 $

4 Lang5 basics

Lang5 is a small interpreted programming language borrowing heavily from APL and
Forth1 The basic goal of Lang5 is to serve as a language for teaching the basics of
array programming as well as to serve as an introduction to the implementation of
interpreters. Lang5 attempts to combine the particular strengths of Forth (in essence
its stack based structure and the ability to extend the language itself by defining so-
called words which can then be used in exactly the same way as built-in functions or
operators) as well as those of APL (especially its array handling capabilities).

4.1 Getting started
So the central data structure employed by Lang5 is a so-called stack which in essence
is a data structure that mainly relies on pushing elements onto it or removing ele-
ments by a pop operation. Thus a stack is a LIFO2 data structure. Such structures are
used in a variety of applications ranging from keeping track of subroutine calls and
their respective parameters and return addresses to the generation of machine code for
arithmetic expressions etc. The most influential stack oriented programming language
is Forth which was conceived by Charles H. Moore in the late 1950s. Using a stack
oriented language feels a bit unusual at the beginning but one gets used to its rather
quickly. As an example, the expression (2+3)*4 is to be evaluated with Lang5. One
way to do this is to push all arguments onto the stack and the applying the necessary
binary operators + and *:

1 lang5> 4 3 2 + * .

2 20

The interpreter will push anything to its stack as long as it is not an operator or any
other thing that can be executed. Individual values, function names, operators etc. are
delimited by white space like a blank character or a newline, so 4 3 2 pushes three
scalar values onto the stack which will contain the value 2 in its topmost position
afterwards.3 Executing a binary operator will always fetch the two topmost elements
from the stack, use them as operands for the operator and push the result back onto
the stack. So executing the binary operator + will pop the two topmost elements of the
stack (2 and 3), add them and push the resulting value 5 back onto the stack which
now contains the values 4 and 5.

1Quite like RPL, the language used in HP’s advanced pocket calculators, borrows from LISP and Forth.
2Short for Last In First Out.
3The topmost position of a stack is called Top Of Stack, TOS for short.

22 4. LANG5 BASICS

Executing the binary operator * will then remove these two values from the stack and
push back the result of the multiplication which is 20 in this case. The function .

finally removes the topmost element from the stack and prints it.

Exercise 2:

1. Calculate the area of a circle with a diameter of 1.25 meters using the Lang5-
interpreter. (Hint: pi pushes an approximation for π onto the stack.)

2. Devise as many different ways as possible to compute the sum of the values 2,
3, 5, 8 and 13 using Lang5.

4.2 Basic data structures
So the basic data structure within Lang5 is a stack. In contrast to Forth this stack
can hold not only scalar values as shown in the preceding section but arrays of ar-
bitrary structure.4 Thus Lang5 distinguishes between scalar values and arrays which
are pushed onto the stack. Examples for scalar values are 3.1415926535, 17 or even a
string like "Hello world!":5

1 lang5> 3.1415926535

2

3 lang5> 17

4

5 lang5> "Hello world!"

6

7 lang5> .s

8 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

9 Stack contents (TOS at bottom):

10 3.1415926535

11 17

12 Hello world!

13 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

The real power of Lang5 results from its ability to deal with arbitrarily deeply nested
arrays on the stack. An array is denoted by enclosing its values into square brackets as
the following examples of a one-, a two- and a three-dimensional array shows:

1 lang5> [1]

2

3 lang5> [[1 2][3 4]]

4The term array will always denote an array of arbitrary dimension in the following.
5Using .s the current contents of the stack can be displayed without destroying the stack’s contents as a

repetitive application of . would do.

4.2. BASIC DATA STRUCTURES 23

4

5 lang5> [[[1 2][3 4]][[5 6][7 8]]]

6

7 lang5> .s

8 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

9 Stack contents (TOS at bottom):

10 [1]

11 [

12 [1 2]

13 [3 4]

14]

15 [

16 [

17 [1 2]

18 [3 4]

19]

20 [

21 [5 6]

22 [7 8]

23]

24]

25 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Sometimes it is necessary to push an operator onto the stack rather than executing it
directly. In this case it can be enclosed either in double quotes to force the interpreter
to accept it as a simple string or it can be preceded with a single quote like this:

1 lang5> "+" .

2 +

3 lang5> ’- .

4 -

Many operators and functions built into Lang5 work on scalars as well as on arrays.
If a unary function like the factorial ! is applied to a scalar it just returns the corre-
sponding factorial. If its argument is an array it will be automatically applied to all
array elements:

1 lang5> 5 ! .

2 120

3 lang5> [0 1 2 3 4 5] ! .

4 [1 1 2 6 24 120]

The same mechanism applies to binary operators and functions, so arrays can be easily
added, multiplied, divided, subtracted etc. in an element-wise fashion:

24 4. LANG5 BASICS

1 lang5> [1 2] [3 4] + .

2 [4 6]

What happens if the data structures are not “compatible” regarding their shape? The
Lang5-interpreter first determines which of the two structures supplied as operands
to a binary operator or function is bigger and the transforms the shape of the smaller
to match that of the bigger structure. If the smaller array does not contain enough
elements for this transformation, its elements are used over and over again to fill the
required intermediate data structure. This also applies to cases where a binary opera-
tor or function is applied to an array and a scalar:

1 lang5> [1 2 3] [4 5] + .

2 [5 7 7]

3 lang5> [1 2 3] 1 + .

4 [2 3 4]

Exercise 3:

1. Compute and print the sum of the two following two-dimensional matrices:1 2 3
4 5 6
7 8 9

 and

7 6 2
1 9 5
3 8 4

2. Subtract the value 1 from all elements of the first matrix shown above.

4.3 Language elements
The basic language elements of Lang5 are divided into built-in operators, functions,
control instructions and so-called words which are user-defined and be used exactly
like built-ins after their definition. This makes it possible to extend the language itself
by defining words which are then used in programs. The following terms are used in
the remaining portion of this book:

4.3.1 Operators
Since Lang5 is a stack based language as Forth, everything has to be written in post-fix
notation, so operators, which are grouped into niladic, unary and binary operators will
fetch 0, 1 or 2 elements from the stack, perform some operations on these values and
push the result back onto the stack. Examples for operators are the well known basic
arithmetic operators like +, - and the like.

As shown in the previous examples, operators work on scalars only – if applied to ar-
rays the Lang5-interpreter will traverse the nested data structure and apply the opera-

4.3. LANGUAGE ELEMENTS 25

tor to the basic scalar elements forming the base of the array, so [1 2 3] 1 + will add
one to every element of the array [1 2 3] yielding [2 3 4]. This holds true for unary
as well as binary operators – if a binary operator is applied to two arrays these should
be of the same shape and size – otherwise the dimensional larger operand determines
how the smaller operand will be restructured automatically – and the operator will
then be applied to corresponding elements from each of the arrays.

In addition to that, binary operators (and binary user-defined words, see section 4.3.5)
can be used in conjunction with the array operation outer which creates data struc-
tures like outer products and the like (see below) as well as with reduce which applies
an operator or word to elements of an array yielding a result with a dimension which
is by one lower than the dimension of the input array.

4.3.2 Functions

While operators work on scalars only and always push exactly one result value back
onto the stack, so-called functions act in a more general way as they can operate on a
value on the stack as a whole and not in an element-wise fashion. An example for such
a function is dup which duplicates the topmost stack element:

1 lang5> [1 2 3] dup .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 [1 2 3]

5 [1 2 3]

6 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

4.3.3 Control instructions

Lang5 only features a few so-called control instructions which are used to implement
conditional execution of program parts and loops.6 The most basic control instruction
is the if-else-then construction:7

1 lang5> 1 2 > if "greater" else "less or equal" then .

2 less or equal

The keyword if removes the topmost stack element and performs all actions up to
the next else or then, whichever comes first, if this value does not evaluate to false.
Typically everything which is not 0 or undefined is considered as being false.

The only built-in loop construction is do-loop which implements an endless loop
which can be terminated with break:

6See section 5.5.
7The else-part is optional.

26 4. LANG5 BASICS

1 lang5> 1 do dup . 1 + dup 5 > if break then loop

2 1

3 2

4 3

5 4

6 5

Exercise 4:
Modify the program shown above so that the loop counts down from 5 to 1 and

then exits.

4.3.4 I/O instructions
Such an instruction either reads or writes data from or to a device (normally stdin

and stdout if no IO-redirection has been executed). One of the output instructions, .,
has been used extensively in the preceding sections already, see section 5.3 for more
information.

4.3.5 Words
A word is a user-defined collection of operators, functions, constants etc. which can be
accessed later on by issuing the name of the word. Thus a word acts very much like
a subroutine in a conventional programming language like Perl. User-defined words
come in three flavors:

Simple words: Such a word acts like a function described above.

Unary words: A unary word can be used exactly like a built in unary operator.

Binary words: A binary word can be used like a binary operator (especially in con-
junction with reduce and outer etc.).

The concept of user-defined words which has been pioneered in Forth is one of the
main features of Lang5. Defining a simple word looks quite the same as it would in
Forth: The word definition itself is started with a colon, followed by a white space
and the name of the new word (or that of a word to be overridden). All following
commands are grouped into this word until a white space separated semicolon is en-
countered. In the following example a word named square is defined which computes
the square of the topmost stack element:

1 lang5> : square dup * ;

2

3 lang5> 5 square .

4 25

4.3. LANGUAGE ELEMENTS 27

Such a simple word works on the stack elements as is – it will not be applied in an
element-wise fashion as binary operators, although in some cases it will look like this.

Exercise 5:
The square word defined above is applied to the topmost stack element as a whole
– explain the behavior of the interpreter in this example:

1 lang5> : square dup * ;

2

3 lang5> [1 2 3] square .

4 [1 4 9]

Why is the result a three-element vector as the original operand and why have
the elements of the operand been squared if the word itself has not been applied
automatically to each vector element?

Things get more interesting when unary or binary words are defined since these be-
have exactly like other built-in unary and binary operators. In the first example a unary
word print will be defined which will by applied automatically in an element-wise
fashion by the Lang5-interpreter if its argument is an array:

1 lang5> : print(*) . ;

2

3 lang5> 1 print

4 1

5 lang5> [1 2 3] print

6 1

7 2

8 3

9 lang5> [[1 2][3 4]] print

10 1

11 2

12 3

13 4

The suffix (*) following the word’s name denotes that this will be a unary word. The
star denotes that the interpreter does not have to care about so called dressed data
structures which are described in section 4.4.

A binary word is defined in the easiest case by specifying (**) as suffix of the word’s
name as the following example shows:8

1 lang5> : binary_print(*,*) . . "------\n" . ;

2

8The control sequence \n used within a string generates a newline character sequence.

28 4. LANG5 BASICS

3 lang5> [1 2 3] [4 5 6] binary_print

4 4

5 1

6 ------

7 5

8 2

9 ------

10 6

11 3

12 ------

Exercise 6:
What will happen if this binary word binary print is applied to a vector [1 2 3]

and a scalar 1 instead of two vectors? Explain the behavior of the interpreter.

4.3.6 Variables
Although variables are required less often in Lang5 than in most other programming
languages, their use often makes a program more readable and maintainable. Variables
are set using set which expects the name of the variable to be set (and declared if it
not already exists) on the topmost stack element and the value which is to be stored in
the variable in the stack element just below. The value stored in a variable is pushed
onto the stack by just entering the name of the variable:

1 lang5> 2 ’x set

2

3 lang5> x x * .

4 4

Using the word .v a list of all variables currently defined can be displayed.9

Exercise 7:
Apply the simple word square defined above to a variable called vector which has
been set to [1 2 3 4] before.

4.4 Dressed data structures
So-called dressed data structures are the basis for overloading words. As powerful as
unary and binary user-defined words are, it is often necessary to make clear to what
type of data such a word is to be applied by the interpreter. Therefore the data struc-
tures on the stack must be marked by dressing them. This operation assigns a meta
information to a data structure without altering its contents.

9This list also contains some special purpose variables which control the operation of the Lang5-
interpreter – see appendix B.

4.4. DRESSED DATA STRUCTURES 29

A data structure can be dressed in two ways: Either implicitly by writing the dress
code enclosed in parentheses behind the structure or by using the dress function. In
the following example two data structures are defined with the dress codes foo and
bar:

1 lang5> [1 2](foo)

2

3 lang5> [3 4] ’bar dress

4

5 lang5> .s

6 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

7 Stack contents (TOS at bottom):

8 [1 2](foo)

9 [3 4](bar)

10 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Applying a simple unary word like print as defined above will fail since the inter-
preter will only apply it in an element-wise fashion to the elements of an undressed
array. In the case of a dressed data structure the interpreter will search for a unary or
binary word with the proper dress code which fails in this example:

1 lang5> print

2 Error: no handler for type ’bar’

Using the dress code it is now possible to overload the word print to deal with data
structures having the dress code foo (and bar respectively):

1 lang5> [1 2](foo)

2

3 lang5> : print(foo) "foo:" . . ;

4 lang5> print

5 foo:[1 2](foo)

6 lang5> .s

7 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

8 Stack contents (TOS at bottom):

9 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Why is there an undefined value on top of the stack now? The reason is simple: The
unary word print with dress code (foo) has been applied to the data structure as a
whole. Whatever this word returns on the stack will be used as the result of this word.
Since the last . consumes the dressed data structure by printing it, there is no return
value from print(foo) and thus the stack contains an undefined element instead of
the original dressed data structure.

This brings up the following question: What does print(foo) “see” on the stack when
it is being executed?

30 4. LANG5 BASICS

1 lang5> 1

2

3 lang5> [2 3](foo)

4

5 lang5> : print(foo) .s ;

6

7 lang5> .s

8 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

9 Stack contents (TOS at bottom):

10 1

11 [2 3](foo)

12 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

13 lang5> print

14 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

15 Stack contents (TOS at bottom):

16 [2 3](foo)

17 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

18 lang5> .s

19 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

20 Stack contents (TOS at bottom):

21 1

22 [2 3](foo)

23 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

This needs some explanation: At first, two values, 1 and [2 3](foo), are pushed onto
the stack as shown by the following .s. Another .s invoked as part of the definition
of print(foo) only shows the dressed structure [2 3](foo) while a third .s invoked
after the execution of print(foo) has completed shows both values again. . .

The reason for this is simple: All unary and binary words operate in a stack jail, i. e. they
get a temporary stack which only contains the one (in the unary case) or two topmost
elements (for binary words) of the main stack. This makes it impossible for a word to
have side effects on the main stack, since every such word gets its own temporary stack
to work in which is destroyed after completion of the word’s execution. At this point
the topmost element of this temporary stack is copied back to the main stack where it
serves as the result of the word.

As complicated as dressed data structures may seem, they are very powerful and used
in many places in the libraries of Lang5. A typical example are the basic arithmetic
operators which are overloaded in the mathematical library to work transparently on
complex numbers. By convention, a complex number, consisting of a real and an imag-
inary part, is denoted by the dress code (c) like this:

1 lang5> [1 2](c) [3 4](c) * .

2 [-5 10](c)

4.4. DRESSED DATA STRUCTURES 31

Two undressed arrays would have been multiplied element-wise as the following ex-
ample shows:

1 lang5> [1 2] [3 4] * .

2 [3 8]

The definition of the overloaded multiplication word for complex numbers which can
be found in the mathematical library10 looks like this:11

1 # Multiplication of two complex numbers.

2 : *(c,c)

3 strip swap strip swap

4 [0 1 0 1] subscript swap [0 1 1 0] subscript

5 * expand drop

6 + rot rot - swap

7 2 compress ’c dress

8 ;

An essential feature of most words operating on dressed data structures can be seen
at the beginning of this overloaded multiplication: Using the strip function the data
structure is undressed – otherwise an endless recursion would occur if another mul-
tiplication becomes necessary in this word which would call the word again etc. swap
is a typical function in stack oriented programming languages the exchanges the two
topmost stack elements, so strip swap strip swap strips both operands and making
sure that their order on the temporary stack remains unchanged.

Exercise 8:
Define overload definition of the binary word * which operates on two data struc-

tures dressed with (baz). This new word shall multiply the elements of the two
operand vectors element-wise but with a change of sign. The result should be a
(baz) data structure again.

Currently, the five following dress codes are used in the Lang5-libraries:

c: Complex numbers

m: Matrices

p: Polar coordinate tupels

s: Sets

v: Vectors

10See section D.
11This serves just as an example since most of the functionality used here has not yet been introduced.

5 The Lang5 dictionary

Lang5 comes with a decent complement of built-in functions, operators and word
(these are defined in so-called libraries which are loaded during startup and are con-
tained in the lib directory of the Lang5-directory tree. The following sections list all
of these elements grouped as follows:

• Stack manipulation and display

• Array manipulation and generation

• File handling

• Mathematical, logical and comparison operations

• Control structures

• Miscellaneous operators and functions

• Variable and word handling

The following sections describe all of the available functions, operators and words
grouped as above and sorted alphabetically within each group.

5.1 Stack manipulation and display
The following functions and words build the backbone of the stack manipulation ca-
pabilities of Lang5. These functions and words operate directly on the stack and do
not care about the structure of any element on the stack, so swap will just interchange
the two topmost stack elements regardless of their dress code or structure.

5.1.1 ..

This function is normally used for debugging purposes only since it prints the stack’s
contents using the Perl’s Data::Dumper yielding not very readable output. .. does
not affect the values on the stack:

1 lang5> 1 2 [3 4] [5 6](foo) ..

2 $1 = [

3 1,

4 2,

34 5. THE LANG5 DICTIONARY

5 [

6 ’3’,

7 ’4’

8],

9 bless([

10 ’5’,

11 ’6’

12], ’foo’)

13];

5.1.2 .s

This word from the standard library1 prints all elements on the stack in non-destructive
way using the standard output format of Lang5 which is pretty useful during program
development:

1 lang5> 1 2 [3 4] [5 6](foo) .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 1

5 2

6 [3 4]

7 [5 6](foo)

8 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.1.3 clear

This word from the standard library removes all elements from the stack:

1 lang5> 1 2 [3 4] [5 6](foo) clear .s

2 Stack is empty!

5.1.4 depth

The depth function pushes the number of elements on the stack onto the stack:

1 lang5> clear 1 2 [3 4] [5 6](foo) depth .

2 4

1See section C.

5.1. STACK MANIPULATION AND DISPLAY 35

5.1.5 drop

This function removes the topmost element of the stack. An empty stack will cause an
error:

1 lang5> clear 1 drop

2

3 lang5> drop

4 Error: too few elements on stack, expected X

5 History: drop clear depth 0 > if ARRAY(0x93bb40) 1 drop drop

5.1.6 dup

The dup function duplicates the topmost stack element which is often useful for the
conditional execution of program parts and the like:

1 lang5> clear [1 2] dup .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 [1 2]

5 [1 2]

6 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.1.7 2dup

This word from the standard library duplicates the two topmost stack elements:

1 lang5> clear 1 2 2dup .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 1

5 2

6 1

7 2

8 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.1.8 ndrop

ndrop which is also defined in the standard library drops the n topmost stack elements
where n is contained in the topmost element which itself does not count:

1 lang5> clear 1 2 3 2 ndrop .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

36 5. THE LANG5 DICTIONARY

3 Stack contents (TOS at bottom):

4 1

5 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.1.9 over

This function the second element from the top of stack to the top of stack:

1 lang5> clear 1 2 over .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 1

5 2

6 1

7 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Exercise 9:
Define a new word twodup that works like 2dup using the over function.

5.1.10 pick

A generalized form of over is the word pick from the standard library. Controlled by a
natural number on top of the stack it will pick the element n positions down the stack
non-destructively and push a copy of this element on the stack:

1 lang5> clear 1 2 3 4 3 pick .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 1

5 2

6 3

7 4

8 1

9 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Exercise 10:
Define yet another word performing the same action as 2dup, this time using pick.

5.1.11 roll

This function implements a very generalized rotation on the elements on the stack. It
expects the number of rotation steps in the topmost stack element and the depth the
rotation shall cover in the element below:

5.1. STACK MANIPULATION AND DISPLAY 37

1 lang5> clear 1 2 3 4 5 6 4 2 _roll .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 1

5 2

6 5

7 6

8 3

9 4

10 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.1.12 roll

This standard library word is a variant of roll. It requires only the depth of the
rotation to be performed in the topmost stack element. Every execution of roll will
then perform a single rotation step.

Exercise 11:
Define a word called myroll based on roll that behaves like roll.

5.1.13 rot

This word defined in the standard library is the equivalent to the classic Forth func-
tion and performs a single rotation on the three topmost stack elements:

1 lang5> clear 1 2 3 rot .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 2

5 3

6 1

7 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.1.14 swap

The swap function interchanges the two topmost stack elements:

1 lang5> 1 2 swap . .

2 1

3 2

38 5. THE LANG5 DICTIONARY

Exercise 12:
Define a word myswap that implements the functionality of swap using only opera-
tions like rot, over and the like.

5.2 Array manipulation and generation
The functions, operators and words described in the following implement the array ca-
pabilities of Lang5. In contrast to the stack operations described above they are “aware”
of the data structures they act upon.

5.2.1 append

The append word defined in the standard library expects two arrays or an array and
a scalar in the two topmost stack elements and returns a larger array containing the
concatenation of the elements of these two operands:

1 lang5> [1 2] [3 4] append .

2 [1 2 3 4]

3 lang5> [1 2] 3 append .

4 [1 2 3]

5.2.2 apply

The function apply applies a unary or binary operator or user-defined word along the
first axis of an array (or two arrays) as the following example shows:

1 lang5> [[1 2][3 4]]

2

3 lang5> : print(*) . ;

4

5 lang5> dup print

6 1

7 2

8 3

9 4

10 lang5> ’print apply

11 [1 2]

12 [3 4]

In the first example, the unary word print is executed on a copy of the two-dimensional
array [[1 2][3 4]]. Since this word has been defined as a unary word denoted by
the suffix (*), the interpreter implicitly applies the word to every single element

5.2. ARRAY MANIPULATION AND GENERATION 39

of the array. Using apply this unary word is only called twice – once for each one-
dimensional sub-array of the original array yielding the output shown at the bottom
of the example.

5.2.3 collapse

The collapse function “flattens” a nested array and returns a one-dimensional array
containing all elements of the argument:

1 lang5> [[1 2][3 4]] collapse .

2 [1 2 3 4]

5.2.4 compress

This function takes n elements from the stack and forms an array from these elements.
It expects the number of elements to be fetched in the topmost stack element:

1 lang5> 1 2 3 4 4 compress .

2 [1 2 3 4]

5.2.5 dreduce

This word from the standard library applies the reduce function (see section 5.2.16)
repeatedly on a nested array structure until only a scalar value is left. It expects a
binary operator on the topmost stack element and an array below. It then applies this
operator between each two successive array elements:

1 lang5> [[1 2][3 4]] ’+ dreduce .

2 10

Exercise 13:
Implement a word mydreduce that performs the same operation as dreduce, based
on reduce.

5.2.6 dress

The dress function dresses an array with a name, a so-called dress code.2 The explicit
form looks like [1 2] ’c dress while the same effect can be achieved with implicit
dressing as in [1 2](c). This function returns the dress code of a dressed data struc-
ture – if applied to a non-dressed structure or a scalar yields an undefined valued:

2See section 4.4.

40 5. THE LANG5 DICTIONARY

1 lang5> [1 2](c) dressed .

2 c

3 lang5> 1 dressed .

4 undef

It should be noted that dressed does not remove the structure its operates on from the
stack, it just pushes the dress code as a string onto the stack.

5.2.7 expand

expand is a function that expects an array in the topmost stack element. It removes
this element from the stack and places all array elements along the first axis back onto
the stack. After expanding the array in this way, the number of elements placed onto
the stack is pushed onto the stack:

1 lang5> clear [[1 2] [3 4] 5] expand .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 [1 2]

5 [3 4]

6 5

7 3

8 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.2.8 extract

This word from the standard library extracts a particular element from an array re-
moving it from the array and placing the element just removed onto the stack:

1 lang5> clear [’this ’is ’a ’test] 2 extract .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 [this is test]

5 a

6 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.2.9 grade

The grade function expects a one-dimensional array (a vector) in the topmost stack
element and generates a vector of the same size containing index values3 which, if
used as argument for a subscript function (see section 5.2.28) will yield a sorted
vector:

3As in most programming languages, indices start at 0.

5.2. ARRAY MANIPULATION AND GENERATION 41

1 lang5> clear [3 1 4 1 5 9 2 6 5 3 5] grade .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 [3 1 4 1 5 9 2 6 5 3 5]

5 [3 1 6 9 0 2 8 4 10 7 5]

6

7 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

8 lang5> subscript .

9 [1 1 2 3 3 4 5 5 5 6 9]

5.2.10 in

in implements the element-of function from set theory. It is best demonstrated with a
simple example:

1 lang5> [1 3 5] [1 2 3 4 5] in .

2 [1 0 1 0 1]

Using the select function (see section 5.2.22) the vector resulting from executing in

can be used to select only those elements of a data structure having a non-zero value
in corresponding locations of this result vector.

5.2.11 index

This function generates an index vector which represents the location of the elements
of the structure found on the topmost stack element in the structure just below it. If
an element is not contained in this structure and empty index element is returned:

1 lang5> [3 1 4 1 5 9 2 6 5 3 5] [1 2 3 4 5 6 7] index .

2 [

3 [1]

4 [6]

5 [0]

6 [2]

7 [4]

8 [7]

9 []

10]

5.2.12 iota

This unary built-in expects a positive integer value n on the top of the stack which will
be removed. iota generates a vector with unit stride, starting at 0 and containing n
elements:

42 5. THE LANG5 DICTIONARY

1 lang5> 5 iota .

2 [0 1 2 3 4]

5.2.13 join

The join function is the inverse of split (see section 5.2.25) – it concatenates the
elements of a vector using a glue string and thus forms a single result string which is
pushed onto the stack:

1 lang5> 4 iota " plus one equals " join .

2 0 plus one equals 1 plus one equals 2 plus one equals 3

5.2.14 length

The length function returns the number of elements along the first axis of the array
found in the topmost stack element. This function does not remove the array from the
stack:

1 lang5> [1 2 3] length .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 [1 2 3]

5 3

6 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.2.15 outer

outer is one of the most mighty functions in Lang5. It expects a binary operator on
the top of the stack and two vectors in the stack elements just below. It will then
create an outer “product”4 of these two vectors based on the operator. Thus a simple
multiplication table can be created as follows:

1 lang5> 10 iota 1 + dup ’* outer .

2 [

3 [1 2 3 4 5 6 7 8 9 10]

4 [2 4 6 8 10 12 14 16 18 20]

5 [3 6 9 12 15 18 21 24 27 30]

6 [4 8 12 16 20 24 28 32 36 40]

7 [5 10 15 20 25 30 35 40 45 50]

8 [6 12 18 24 30 36 42 48 54 60]

9 [7 14 21 28 35 42 49 56 63 70]

4The type of which depends on the operator used.

5.2. ARRAY MANIPULATION AND GENERATION 43

10 [8 16 24 32 40 48 56 64 72 80]

11 [9 18 27 36 45 54 63 72 81 90]

12 [10 20 30 40 50 60 70 80 90 100]

13]

5.2.16 reduce

This function also expects a binary operator in the topmost stack element and a vector
just below. It will then apply the operator between all successive elements of the vector
and push the result of this operation back to the stack. Using reduce the sum of the
first 100 integers can be computes as follows:

1 lang5> 100 iota 1 + ’+ reduce .

2 5050

reduce always operates along the first axis of the array to be processed, so here the +

operator acts on the three one-dimensional components of the two-dimensional array:

1 lang5> [[1 2 3][4 5 6][7 8 9]] ’+ reduce .

2 [12 15 18]

If applied to an empty array it returns the value of the neutral element of the binary
operator to which it was applied if this operator features a neutral element. This is
often useful when dealing with boundary cases like the problem of handling the value
zero in a factorial computation:

1 lang5> [] ’+ reduce .

2 0

3 lang5> [] ’* reduce .

4 1

Exercise 14:
Define a unary word named myfactorial to calculate the factorial of a positive

integer value on the top of the stack.

5.2.17 remove

This function expects a scalar or a vector in the topmost stack element and an array
at the element just below. It will then remove all elements from the first dimension
of this array which are addressed by the elements of the vector or scalar found in the
TOS:

44 5. THE LANG5 DICTIONARY

1 lang5> 4 iota 1 + [2 3] remove .

2 [1 2]

3 lang5> [[1 2 3][4 5 6][7 8 9]] 1 remove .

4 [

5 [1 2 3]

6 [7 8 9]

7]

5.2.18 reshape

The reshape function allows the manipulation of the structure of arrays. It expects
two arrays in the two topmost stack elements: a vector describing the structure of the
resulting array and the array the structure of which is to be changed.5 The following
example shows how to build a three-dimensional array based on a two dimensional
vector using reshape:

1 lang5> 8 iota 1 + [2 2 2] reshape .

2 [

3 [

4 [1 2]

5 [3 4]

6]

7 [

8 [5 6]

9 [7 8]

10]

11]

If there are not enough elements in the source array to fill the structure of the desti-
nation array, its elements are reread from the beginning over and over again until the
result has been populated with values:6

1 lang5> 1 [2 2] reshape .

2 [

3 [1 1]

4 [1 1]

5]

Exercise 15:
Define a unary word that expects a natural number n on the top of the stack and

will create an identity matrix having n columns and rows.

5Thus reshape resembles the binary case of APL’s ρ.
6This behavior also applies if the source structure of the reshape operation is a simple scalar.

5.2. ARRAY MANIPULATION AND GENERATION 45

5.2.19 reverse

This function reverses the elements along the first axis of an array:

1 lang5> [1 2 3] reverse .

2 [3 2 1]

3 lang5> [[1 2] [3 4]] reverse .

4 [

5 [3 4]

6 [1 2]

7]

5.2.20 rotate

The rotate function rotates an n-dimensional array along its axes. It expects the struc-
ture to be rotate on the second to top element of the stack and a vector controlling to
rotation in the topmost stack element. The following example first shows a single rota-
tion along the first axis, followed by a rotation by -2 along the second axis and, finally,
a combined rotation along both axes of a two-dimensional array:

1 lang5> 9 iota [3 3] reshape

2

3 lang5> dup [1 0] rotate .

4 [

5 [6 7 8]

6 [0 1 2]

7 [3 4 5]

8]

9 lang5> dup [0 -2] rotate .

10 [

11 [2 0 1]

12 [5 3 4]

13 [8 6 7]

14]

15 lang5> [1 1] rotate .

16 [

17 [8 6 7]

18 [2 0 1]

19 [5 3 4]

20]

5.2.21 scatter

This function distributes (scatters) the values of a one dimensional array into a new
data structure, controlled by an index vector as the following example shows:

46 5. THE LANG5 DICTIONARY

1 lang5> [’a ’b ’c] [[0 0][0 1][1 0][1 1]] scatter .

2 [

3 [a b]

4 [c a]

5]

As with other functions, the elements of the source array are reread from the beginning
if there are not enough elements to fill the destination structure.

5.2.22 select

The select function selects elements from an array. It expects a one-dimensional array
at the topmost stack element containing values evaluating to true (anything except 0)
or false (the value 0) and an array in the element below. The values of the control vec-
tor determine which elements from the second array are to be included in the resulting
data structure:

1 lang5> [’a ’b ’c] [1 0 1] select .

2 [a c]

5.2.23 shape

shape is the inverse function to reshape – it returns a vector describing the structure
of an array. This result vector contains one element for each dimension of the source
data structure which has been examined, containing the number of elements along
this particular axis.7 Obviously, applying shape twice to an array returns its dimen-
sionality:

1 lang5> [[1 2][3 4]] shape .

2 [2 2]

3 lang5> [[1 2][3 4]] shape shape .

4 [2]

shape does not remove the array that it operated upon from the stack.

5.2.24 slice

The slice function expects a source array on the element below the TOS and a two-
element vector in the topmost stack element. This array contains two coordinate tuples
controlling the slicing operation by defining an upper left and lower right “corner” of
the n-dimensional cube represented by the source array. The following example shows

7Thus shape resembles the unary case of APL’s ρ.

5.2. ARRAY MANIPULATION AND GENERATION 47

this behavior: First, a three-dimensional cube containing 64 elements running from 0

to 63 is created. Then a sub-cube defined by the two coordinate vectors [1 1 1] and
[2 2 2] describing the upper left front and lower left back corner is extracted from
this structure and printed:

1 lang5> 64 iota [4 4 4] reshape [[1 1 1][2 2 2]] slice .

2 [

3 [

4 [21 22]

5 [25 26]

6]

7 [

8 [37 38]

9 [41 42]

10]

11]

The two-element control vector containing the coordinate tupels can also be used to
slice data from a higher perspective be omitting one or more dimensions:

1 lang5> 64 iota [4 4 4] reshape [[1] [3]] slice .

2 [

3 [

4 [16 17 18 19]

5 [20 21 22 23]

6 [24 25 26 27]

7 [28 29 30 31]

8]

9 [

10 [32 33 34 35]

11 [36 37 38 39]

12 [40 41 42 43]

13 [44 45 46 47]

14]

15 [

16 [48 49 50 51]

17 [52 53 54 55]

18 [56 57 58 59]

19 [60 61 62 63]

20]

21]

Here the first two-dimensional planes from the three-dimensional 64-element cube
have been sliced out.

48 5. THE LANG5 DICTIONARY

5.2.25 split

The binary operator split, which is the inverse of join,8 expects two scalars on the
topmost stack elements: a regular expression and a string. The regular expression con-
trols where the string is split into parts. These parts are the combined into a result
array that is placed back onto the stack:

1 lang5> "this is a string" " " split .

2 [this is a string]

5.2.26 spread

The spread function applies a binary operator to the element of an array in a succes-
sive manner:

1 lang5> [1 2 3] ’+ spread .

2 [1 3 6]

So the first element of the result is the first element of the original array, the next
element of the result is the sum of the first and second elements of the source, the
third element is calculated by applying the binary operator to the first three elements
of the source array etc.

Exercise 16:
Generate an array containing the squares of the first ten natural numbers without

using multiplication etc. Just use spread and remember that squares can be easily
generated by adding odd numbers with stride 2.

5.2.27 strip

The strip function removes the dress code of an array. It is the inversion function to
dress:9 If applied to a non-dressed array, nothing will happen.

1 lang5> [1 2](foo) strip .

2 [1 2]

3 lang5> [1 2] strip .

4 [1 2]

5.2.28 subscript

This function selects data from an array structure based on a vector containing coor-
dinate vectors as the following example shows:

8See section 5.2.13.
9See section 5.2.6.

5.3. FILE HANDLING 49

1 lang5> 64 iota [4 4 4] reshape [1 [1 1 1] [2 2 2]] subscript .

2 [

3 [

4 [16 17 18 19]

5 [20 21 22 23]

6 [24 25 26 27]

7 [28 29 30 31]

8]

9 21 42

10]

5.2.29 transpose

The transpose function performs a generalized matrix transposition. It expects a con-
trol value on the top of the stack and the array to be transposed in the stack element
just below:

1 lang5> 9 iota [3 3] reshape dup 1 transpose .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 [

5 [0 1 2]

6 [3 4 5]

7 [6 7 8]

8]

9 [

10 [0 3 6]

11 [1 4 7]

12 [2 5 8]

13]

14 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

5.3 File handling
The basic output functions, namely ., .., and .s have already been introduced in
section 5.1 – output generated by those functions is directed to the standard output
channel10 normally, but there are a number of functions that allow reading from and
writing to files as well.

10stdout for short. stdout has the file number 1.

50 5. THE LANG5 DICTIONARY

5.3.1 close

This function closes a file which has been previously opened using the open function
(see section 5.3.5). close expects the number of the file to be closed on the topmost
stack element.

5.3.2 eof

The eof function expects the number of a previously opened file (see section 5.3.5) on
the TOS and returns the value 1 if a following read operation (see section 5.3.6) would
result in an error due to reaching the end of the file.11 Otherwise 0 is returned.

5.3.3 fin

This function expects a valid file number in the topmost stack element and redirects
the standard input channel12 to that particular file.

5.3.4 fout

The fout function redirects stdout to the file specified by the file number in the top-
most stack element.

5.3.5 open

This function opens a file for read, write, or append. open expects two scalar values on
the two topmost stack elements: one describing the mode of operation for which the
file will be opened (possible values are <, >, and >> for read, write, and append), the
other one containing the name of the file.

open removes these two scalars from the stack and returns the file number of the file
just opened. The following example shows how to create a file named test.dat if it
does not exist already and write the string "Hello world!\n" to it:

1 lang5> ’> ’test.dat open dup fout "Hello world!\n" . close

5.3.6 read

read reads a record from a stream13 and pushes it onto the stack. Thus reading the
record which was written to the file test.dat just before can be accomplished like
this:

1 lang5> ’< ’test.dat open dup fin read . close

2 Hello world!

11EOF for short.
12stdin for short. stdin has the file number 0.
13Be default this is stdin which can be changed by fin, see section 5.3.3.

5.4. MATHEMATICAL, LOGICAL AND COMPARISON OPERATIONS 51

5.3.7 STDIN, STDOUT, STDOUT
These three words push the respective file numbers of the three standard IO-streams
stdin, stdout and stderr14 onto the stack.

5.3.8 unlink

The unlink function actually deletes a file which name is specified in a scalar on the
TOS. The following example shows how to delete the file test.dat created in the
examples above:

1 lang5> ’test.dat unlink

5.3.9 slurp

If is often quite handy to read the content of a file in a single step. This is accomplished
by the word slurp which expects the name of the file in the TOS element and returns
an one-dimensional array containing the records of the file. Assume that there is a file
grades.dat containing the following lines of data:

Name;grade

Student a;2

Student b;5

Student c;3

Student d;1

Student e;1

Reading this file’s contents into an array can be accomplished like this:

1 lang5> ’grades.dat slurp .

2 [Name;grade Student a;2 Student b;5 Student c;3 Student d;1

3 Student e;1]

Exercise 17:
Define a word that expects the name of a file containing grades in the format shown
above which reads in the file and returns the mean grade of all students.

5.4 Mathematical, logical and comparison
operations

Lang5 supports quite a lot of mathematical, logical and comparison operators and
words which are described in more detail in the following. In most cases these opera-

14The standard error stream.

52 5. THE LANG5 DICTIONARY

tors and words are rather self-explanatory.

5.4.1 +, -, *, /

These are the traditional binary arithmetic operation plus, minus15 Plus and minus
have 0 as their neutral element while multiplication and division use 1 as neutral ele-
ment. These four operators are already overloaded to work transparently on complex
numbers.16 In addition to this, * has been overloaded to multiply matrices by vectors
or matrices.17

5.4.2 %, **
Binary modulus and power operators. Both have 1 as their neutral element.

5.4.3 &, |, ∧
Bit-wise and, or, and exclusive or operators.

5.4.4 ==, !=, >, <, >=, <=

Binary numerical comparison operators. == and != are overloaded to work on complex
numbers18 as well as on polar coordinates.19

Exercise 18:
Define a word largest only that expects two one-dimensional arrays a and b on

the top of the stack and returns an one-dimensional array that only contains those
elements from a that are bigger than the corresponding elements from b. Test it
with two arrays [1 2 3] and [0 2 2]. The result should be the array [1 3].

5.4.5 ===

The binary operator === is an “exactly equals” operator. Applied to undef and 0 it will
return 0 and not 1 as a simple == would do.

5.4.6 eq, ne, gt, lt, ge, le

These are the string-comparison equivalents to the numerical comparison operators
described in section 5.4.4.

15Since this is a binary operator, it can not be used to change the sign of a value. To accomplish this the
word neg (see section 5.4.34) is used.

16These are dressed with (c).
17Matrices and vectors are dressed with (m) and (v) respectively.
18Dressed with (c).
19Dressed with (p).

5.4. MATHEMATICAL, LOGICAL AND COMPARISON OPERATIONS 53

5.4.7 eql

The binary string comparison operator eql is equivalent to === (see section 5.4.5), it
will not treat empty strings and undef as being equal.

5.4.8 <=>, cmp
Generalized numerical and alphanumerical comparison operators. a b <=> yields -1
if a is less than b, 0 if both are equal and +1 if a is greater than b. cmp behaves accord-
ingly but the actual comparison is performed in lexicographic mode.

5.4.9 ||, &&
Binary logical or and and operators.

5.4.10 !

This unary word implements the factorial function.

5.4.11 ?

This so-called unary “dice” operator represent a simple pseudo-random generator.
The value ncontained in the topmost stack element is used as the upper limit for the
pseudo-random number p to be returned which will always satisfy 0 ≤ p < n.

5.4.12 atan2

The binary operator atan2 returns the arc tangent function of the two topmost stack
element.

5.4.13 abs

The unary abs word returns the absolute value of a numerical value. In case of a com-
plex number, dressed with (c), it will return

√
re2 + im2.

5.4.14 amean

This word returns the arithmetic mean of the element in a one-dimensional vector.

Exercise 19:
Implement your own version of this function and call it myamean.

5.4.15 and

Logical and operator.

54 5. THE LANG5 DICTIONARY

5.4.16 cmean

This word returns the cubic mean of the elements of a one-dimensional vector.

5.4.17 complex

The unary word complex converts a value represented by polar coordinates (dressed
with (p)) into a complex number (dressed with (c)).

5.4.18 cos

Calls the cosine function.

5.4.19 defined

Returns 1 if a value is not undef – if an element is not defined, the value undef is
returned:

1 lang5> [1 undef 2] defined 1 == .

2 [1 0 1]

5.4.20 distinct

This unary word removes all elements from a set, a one-dimensional vector dressed
with (s), which occur more than once:

1 lang5> [3 1 4 1 5 9 2 6 5 3 5](s) distinct .

2 [1 2 3 4 5 6 9](s)

5.4.21 e

Places an approximation for Euler’s constant onto the stack.

5.4.22 eps

Places a constant ε onto the stack. This value should be used when comparing floating
point numbers together with abs instead of a simple ==:20

1 lang5> 1 3 / .3333333333333 == .

2 0

3 lang5> 1 3 / .3333333333333 - abs eps < .

4 1

20Comparing floating point values without the use of such an ε value is never a good idea since such
values suffer from various problems which make them only a mediocre substitute for real numbers from R.

5.4. MATHEMATICAL, LOGICAL AND COMPARISON OPERATIONS 55

5.4.23 exp

This unary operator returns the exponential function of the argument found in the
topmost stack element.

5.4.24 gcd

This word expects two integer numbers in the two topmost stack elements and returns
their greatest common divisor.

5.4.25 gmean

The word gmean returns the geometric mean of the elements of an one-dimensional
vector which is expected in the TOS.

5.4.26 hmean

Returns the harmonic mean of the elements of an one-dimensional array on the TOS.

5.4.27 hoelder

Computes the generalized mean, the so-called Hoelder-mean of the elements of an
one-dimensional array expected on the top of the stack.

5.4.28 im

Returns the imaginary part of a complex number (dressed with (c)):

1 lang5> [1 2](c) im .

2 2

5.4.29 int

This unary operator returns the integer part of a value:

1 lang5> 1 3 / int .

2 0

3 lang5> 10 [2 3 4 5] / int .

4 [5 3 2 2]

5.4.30 intersect

This word returns the intersection of two sets (arrays dressed with (s)). Duplicate
elements will be removed from the result set!

56 5. THE LANG5 DICTIONARY

5.4.31 max

The binary operator max returns the maximum of two values:

1 lang5> 2 3 max .

2 3

3 lang5> [1 2 3 4 5 6 7] [3 1 4 5 9 2 6] max .

4 [3 2 4 5 9 6 7]

Exercise 20:
Define a word set max that will work on a set (dressed with s) containing numeric
values which will return the maximum value of the set’s elements. (Hint: You can
use spread and extract to accomplish this task.)

5.4.32 median

This word returns the median of a one-dimensional numeric vector:

1 lang5> [3 1 4 5 9 2 6] median .

2 4

5.4.33 min

This binary operator returns the minimum of two values.

5.4.34 neg

The unary operator neg changes the sign of a numerical value.

5.4.35 not

Unary not operator.

5.4.36 or

Binary logical or operator.

5.4.37 polar

This unary word converts a complex number, dressed with (c), into a polar value
(dressed with (p)).

5.4. MATHEMATICAL, LOGICAL AND COMPARISON OPERATIONS 57

5.4.38 prime

This unary word tests if an integer value is a prime number and returns a positive
integer if true, otherwise 0 is returned.

Exercise 21:
Define a word prime list that expects an integer value on the TOS and returns a

list of prime numbers up to that number using the prime word.

5.4.39 qmean

This word returns the quadratic mean of the elements of an one-dimensional array
which is expected in the topmost stack element.

5.4.40 re

This unary word returns the real part of a complex number (dressed with (c)):

1 lang5> [1 2](c) re .

2 1

5.4.41 sin

Returns the sine of its argument.

5.4.42 sqrt

Returns the square root of a positive value.

Exercise 22:
Define a new word better sqrt that can work with positive values as well as with
negative ones (returning a complex number in the latter case).

5.4.43 subset

This word expects two sets (dressed with (s)) on the stack and tests if the one on the
TOS is a subset of the set just below. If this is true, 1 will be pushed onto the stack, 0
otherwise.

1 lang5> [1 2 3](s) [1 3](s) subset .

2 1

3 lang5> [1 2 3](s) [3 1 2](s) subset .

4 1

5 lang5> [1 2 3](s) [2 4](s) subset .

6 0

58 5. THE LANG5 DICTIONARY

5.4.44 tan

This unary word return the tangent of its argument.

5.4.45 union

This word expects two sets (dressed with (s)) on the stack and returns the union of
these two sets. The resulting set does not contain any duplicates:

1 lang5> [1 2 3](s) [3 4 5](s) union .

2 [1 2 3 4 5](s)

5.5 Control structures
Although the available control structures and elements have already been described
in section 4.3.3 they are listed here again as a reference:

5.5.1 break

break terminates the execution of a loop which is the only way to get out of a do-loop
construction. It also terminates the execution of a word when it is executed.

5.5.2 do-loop
The two keywords implement an endless loop. In contrast to Forth, Lang5 does not
support an implicit loop variable like Forth’s I. The only way to exit such a loop is
through executing break.

5.5.3 if-else-then
These three keywords implement the traditional control structure as in other lan-
guages. Due to the stack-based nature of Lang5 if interprets the topmost element of
the stack as a logical value to control the execution of the following block of code until
an else, which is optional, or the terminating then is found.

5.6 Miscellaneous functions and words

5.6.1 execute

This function expects a string of Lang5-instructions or an one-dimensional array of
strings of such instructions in the topmost stack element and executes these instruc-
tions:

5.6. MISCELLANEOUS FUNCTIONS AND WORDS 59

1 lang5> clear "1 2 .s swap" execute .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 1

5 2

6 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

7 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

8 Stack contents (TOS at bottom):

9 2

10 1

11 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

A typical application for this function is to eliminate loops with a fixed, previously
known number of iterations by explicit loop-unrolling:

1 lang5> "’test ." 5 reshape execute

2 testtesttesttesttest

5.6.2 exit

exit terminates the Lang5-interpreter immediately.

5.6.3 gplot

The gplot word is a simple interface to the gnuplot package.21 It expects a one-
dimensional array on the stack and generates a plot based on its individual elements.

5.6.4 help

help can be used to obtain a basic explanation of built-in functions and the like:

1 lang5> ’+ help

2 +: Basic binary operator +, neutral element: 0.

5.6.5 load

This function loads (and executes) a Lang5-program from a file. The following example
shows how to execute the example program generating an Ulam-spiral which can be
found in the examples-directory of the Lang5-directory tree:

21This package must be installed separately.

60 5. THE LANG5 DICTIONARY

1 lang5> ’lang5/trunk/examples/ulam.5 load

2 73 79

3 43 47

4 71 23

5 41 7

6 19 2 11 53

7 5 3 29

8 67 17 13

9 37 31

10 61 59

5.6.6 panic

The panic function prints the content of the topmost stack element and immediately
leaves the Lang5-interpreter loop. When running in batch-mode this will terminate the
Lang5-interpreter instantaneously, while it will just return to the command prompt
when running in interactive mode.

5.6.7 save

The save word saves the current work-space to a file which name is expected in the
topmost stack element. save makes use of dump (see section 5.7.4) as it loops over a list
of all variable and word names and appends their respective definition to the file being
written. So saving and restoring the current work-space can be done as follows:22

1 $ lang5

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..

3 Trig..NT..

4 loading stdlib.5: Const..Misc..Stk..Struct..

5 lang5> : square dup * ;

6

7 lang5> 25 square .

8 625

9 lang5> ’my_workspace.5 save

10 Saving workspace to my_workspace.5: done

11 lang5> exit

12

13 $ lang5 -i my_workspace.5

14 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..

15 Trig..NT..

16 loading stdlib.5: Const..Misc..Stk..Struct..

17 loading my_workspace.5

22The -i qualifier forces the Lang5-interpreter to enter interactive mode which it would not do otherwise,
if called with a file like this.

5.6. MISCELLANEOUS FUNCTIONS AND WORDS 61

18 lang5> 25 square .

19 625

20 lang5>

5.6.8 system

The unary operator executes a string at the shell level of the operating system. This is a
potentially very dangerous function as it might actually destroy the operating system
if not used with care! The results of the command executed in the shell are placed into
a one-dimensional array on the TOS:

1 lang5> ’date system .

2 [Sun Apr 7 20:46:11 CEST 2013]

5.6.9 type

This function returns the type of the element in the topmost stack element without
destroying this element:

1 lang5> 5 type [1 2 3] type [1 2](c) type .s

2 vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

3 Stack contents (TOS at bottom):

4 5

5 S

6 [1 2 3]

7 A

8 [1 2](c)

9 D

10 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Possible results are:

B: Binary operator

U: Unary operator

N: Niladic operator

F: Built in function

V: Variable

W: User defined word

S: Scalar

A: Array

D: Dressed data structure

62 5. THE LANG5 DICTIONARY

5.6.10 ver

ver pushes the version number of the Lang5-interpreter onto the stack.

5.7 Variable and word handling

5.7.1 .ofw

This built-in function prints a list of all operators, functions and words known the
Lang5-interpreter at the current moment. Each name of such an element is preceded
by a single character denoting its type:

B: Binary operator

U: Unary operator

N: Niladic operator

F: Built in function

V: Variable

W: User defined word

5.7.2 .v

This word displays a list of all defined variables, including the special variables ex-
plained in section B.

1 lang5> .v

2 Variables:

3 __log_level’ ---> ’ERROR’

4 __number_format’ ---> ’%4s’

5 __terminal_width’ ---> ’80’

5.7.3 del

This function expects the name of a variable or user-defined word in the topmost stack
element and deletes this variable or word.

5.7.4 dump

This function converts a user-defined word into a textual representation that is pushed
as a string onto the stack.23

23This function is the heart of explain.

5.7. VARIABLE AND WORD HANDLING 63

5.7.5 eval

This unary operator expects the name of a variable on the top of the stack and returns
its content.

5.7.6 explain

This word expects the name of a user-defined word or variable on the topmost stack
element and prints this word’s or variable’s definition to stdout:

1 lang5> ’prime explain

2 : prime(*)

3 type "S" ne

4 if

5 "prime: TOS is not scalar!\n" panic

6 then

7 dup 1 ==

8 if

9 drop 0

10 then

11 dup 4 <

12 if

13 break

14 then

15 dup sqrt 2 / int iota 1 + 2 * 1 + [2]

16 swap append % "&&" reduce

17 ;

5.7.7 set

Sets (and defines, if necessary) a variable. The name of the variable is expected in the
topmost stack element and the value that variable is to be set to is expected in the stack
element just below.24

Caution: User-defined words and variables share the same name-space, so trying to
define a variable with a name already used for a user-defined word will either in an
error message if the interpreter is running in interactive mode or in an abort if the
interpreter is running in batch mode!

5.7.8 vlist

Pushed a one-dimensional array containing the names of all variables onto the stack:

1 lang5> vlist .

2 [__log_level __number_format __terminal_width]

24See section 4.3.6.

64 5. THE LANG5 DICTIONARY

5.7.9 wlist

Similar to vlist this pushes a list of the names of all user-defined words onto the
stack:

1 lang5> wlist .

2 [! != * + - .s .v / 2dup == STDERR STDIN STDOUT abs amean append

3 clear cmean complex distinct dreduce e eps explain extract gcd

4 gmean gplot hmean hoelder im intersect max median min ndrop neg

5 pi pick polar prime qmean re roll rot save slurp subset tan union]

6 Programming examples

6.1 Fibonacci numbers
The elements of the sequence defined by

f (0) = (1) = 1 and
f (i) = f (i − 1) + f (i − 2) ∀i > 1

are called Fibonacci numbers in honor of Leonardi Pisani who discovered this se-
quence among many other (more important and influential) things.1 Generating this
sequence with Lang5 can be done like this2:

1 : fib # Define a word named fib

2 dup 2 < # Handle first

3 if # two sequence

4 drop 1 # elements.

5 else # All other

6 dup # elements end

7 1 - fib # here.

8 swap 2 - fib

9 +

10 then

11 ;

12

13 0 do # Make a loop running from 0 to 10

14 dup fib . 1 +

15 dup 10 > if break then

16 loop

As straightforward as this solution is, it makes no use of any Lang5 features extending
a traditional Forth interpreter. Defining a unary word fib(*) the explicit loop can be
replaced by applying this word to a vector with unit stride as the following program
shows:

1 : fib(*)

2 dup 2 < if

1See [Lüneburg 1993].
2Remember that, as in Perl, there is more than one way to do it!

66 6. PROGRAMMING EXAMPLES

3 drop 1 break

4 then

5 dup 1 - fib

6 swap 2 - fib +

7 ;

8

9 10 iota fib .

6.2 Throwing dice

More of the array language features of Lang5 are employed in the following example
in which the arithmetic mean of the outcomes of throwing a six sided dice n ∈ N

times is computed. Whereas non-array languages would require a loop to perform the
repeated throwing of the dice this is accomplished in Lang5 by first creating a vector
containing n times the value 6 representing the number of sides of the dice. Such a
vector containing 100 elements can be created like this: 6 100 reshape Applying the
unary ? operator to this vector will consume this vector and generate a new vector
containing 100 pseudo-random numbers 0 ≥ r < 6. Since a dice always yields a natural
number between 1 and 6 as a result, the unary int operator will be applied to this
vector, truncating every floating point vector element. Adding one finally yields the
desired vector containing 100 elements.

In the last step, the elements of this vector are summed by ’+ reduce and then divided
by the number of elements to return the desired arithmetic mean. The following listing
shows a complete Lang5 program implementing this examples:

1 : throw_dice

2 # Make a vector of the form [6 6 6 ... 6].

3 6 over reshape

4

5 # Throw dice n times, retain integer part and make sure

6 # the results are between 1 and 6.

7 ? int 1 +

8

9 # Sum over all results and divide by the number of values.

10 ’+ reduce swap /

11 ;

12

13 100 throw_dice .

6.3. COSINE APPROXIMATION 67

6.3 Cosine approximation
Applying the very same principles, a simple cosine approximation using the well
known MacLaurin series

cosx ≈
n∑
i=0

(−1)i
x2i

(2i)!

can be written in Lang5 without any explicit loops at all as the following example
shows:

1 #

2 # Approximation of the cosine function using a MacLaurin

3 # series of 11 terms. The argument is expected on the TOS.

4 #

5 : mc_cos

6 # Save x and the number of MacLaurin terms for future use.

7 ’x set 9 ’terms set

8

9 # Generate a vector containing x ** (2 * i).

10 terms iota dup defined x * swap 2 * dup ’v2i set **
11

12 # Generate a vector containing (2 * i)! and divide the

13 # previous vector.

14 v2i ! /

15

16 # Generate a vector of the form [1 -1 1 -1 1 ...].

17 terms iota 1 + 2 % 2 * 1 -

18

19 # Multiply both vectors and compute the sum of the

20 # result’s elements.

21 * ’+ reduce

22 ;

23

24 3.14159265 mc_cos .

6.4 List of primes
A typical way to generate a list of primes in an array language like APL has already
been shown in section 1.2:

(∼ E ∈ E ◦ .× E)/E← 1 ↓ ιE← 100

This APL expression generates a vector with unit stride, starting with 2 and uses this
as the base for creating a matrix by applying an outer product operation. This matrix

68 6. PROGRAMMING EXAMPLES

contains no prime numbers at all and can thus be used to select all values from a
copy of this vector which are not contained in the matrix thus yielding a list of prime
numbers. Its Lang5-implementation looks like this:

1 : prime_list

2 1 - iota 2 + # Generate a vector [2 .. TOS]

3 dup dup dup # Make sure there are four identical vectors.

4 ’* outer # Outer product of the top two vectors.

5 swap in # Generate a selection vector based on vector

6 # and matrix.

7 not # Invert the elements of this vector

8 select # Use this vector to select elements from

9 # the vector [2 .. TOS].

10 ;

11

12 do

13 "Please enter a number between 2 and 100: " .

14 read

15 dup 2 < if

16 "\tToo small!\n" . drop

17 else

18 dup 100 > if

19 "\tToo large!\n" . drop

20 else

21 break

22 then

23 then

24 loop

25

26 prime_list .

Exercise 23:
Implement a unary word called myprime that returns 0 for a non-prime argument

and 1 otherwise. This word should rely on trial divisions using the modulus oper-
ation without any explicit loop or conditional. To test if a given n ∈N is prime, a
vector containing

√
n− 1 elements n is generated in a first step. Then a vector with

divisors is generated and both vectors are processed by %. If there is any value that
divides n without remainder, n is not prime.

6.5 Printing a sine curve
Generating simple ASCII plots of functions is easy in an array language like Lang5.
The basic idea is to mimic a strip recorder. Each line printed corresponds to one x-
coordinate. The y-coordinate of a point to be printed is then set by generating a string
of as many spaces as specified by the value of the y-coordinate.

6.6. SORTING EXTERNAL DATA 69

1 # Generate a string consisting of n (from TOS) "-" and terminated

2 # by CR/LF.

3 : print_dot(*) " " 1 compress swap reshape "*\n" append "" join . ;

4

5 # Create a vector containing the width of the bargraph to be

6 # printed.

7 21 iota 10 / 3.14159265 * sin 20 * 25 + int

8

9 print_dot # Apply the word print_bar elementwise to this vector.

The output generated by this program has been shown in section 3.3.

6.6 Sorting external data
This example is just a variation of exercise number 17:

1 a ; 7

2 b ; 1

3 c ; 3

1 : get_upper(*) ’; split expand drop swap drop ;

2 : get_lower(*) ’; split expand drop drop ;

3

4 ’sort.data slurp dup

5 get_lower swap get_upper

6 grade swap drop subscript

7 .

6.7 Matrix-vector-multiplication
Since the basic built-in multiplication operator * performs an element-wise multipli-
cation of two data-structures, it must be explicitly overloaded to perform a matrix-
vector-multiplication.

The definition : *(m,v) ...; overloads the multiplication operator for matrix-vector-
operations. First a unary local word inner+ which computes the sum of the elements
of a vector is defined before the dress codes of the arguments for this multiplication
operator are stripped.

The multiplication performed in the following step is the basic multiplication which
will work element-wise on the elements of the two- and the one-dimensional data-
structure. The resulting two-dimensional matrix is then reduced to a vector by apply-
ing inner+. Dressing it as a vector completes the operation.

70 6. PROGRAMMING EXAMPLES

1 # Multiplication word:

2 : *(m,v)

3 # Calculate the inner sum of a vector:

4 : inner+(*) ’+ reduce ;

5

6 # Get rid of the dress codes:

7 strip swap strip swap

8

9 * ’inner+ apply

10 ’v dress

11 ;

12

13 # Create a 3-by-3 matrix and a three-element vector:

14 9 iota 1 + [3 3]reshape ’m dress

15 3 iota 10 + ’v dress

16

17 # Multiply the matrix with the vector:

18 * .

6.8 Sum of cubes
[Adams et al. 2009][p. 41] contains a short FORTRAN example program which generates
a list of all natural numbers between 1 and 999 which are equal to the sum of the
cubes of their respective digits. The approach taken in this program is pretty straight-
forward: Three nested loops generate the three digits of the numbers to be tested. The
number made up from these digits is then compared to the sum of the digit cubes and
printed if both are equal.

1 program sum_of_cubes

2 ! This program prints all 3-digit-numbers that

3 ! equal the sum of the cubes of their digits.

4 implicit none

5 integer :: H, T, U

6 do H = 1, 9

7 do T = 0, 9

8 do U = 0, 9

9 if (100*H + 10*T + U == H**3 + T**3 + U**3) &

10 print "(3I1)", H, T, U

11 end do

12 end do

13 end do

Using an array language the same problem can be solved much more elegantly:

6.9. PERFECT NUMBERS 71

999 iota 1 +

generates an array containing all numbers to be tested. After creating a couple of
copies of this vector, the unary word cube sum is applied to this array. This word splits
a number on an empty string which results in an array containing the individual digits
of this number.3 These digits are then taken to their third power and summed using
reduce. The array resulting from applying cube sum to the original value array is then
compared with one of the copies for equality yielding a binary selection array. Using
select only those elements which are equal to their digit-cube-sum are selected and
printed.

1 # Print all natural numbers < 1000 which are equal to the sum

2 # of the cubes of their respective digits:

3

4 : cube_sum(*) "" split 3 ** ’+ reduce ;

5 999 iota 1 + dup dup cube_sum == select .

6.9 Perfect numbers
A so called perfect number is a natural number which is equal to the sum of its positive
divisors excluding the number itself. Using

% not

in the unary word p the divisors of a given natural number are identified by creating
an array containing 1 at the position of every divisor and 0 in all other places. This
array is then used to generate a list of the divisors by select which is then summed
and compared to the value being tested.

1 : p(*)

2 dup dup 1 - iota 1 + dup rot swap

3 % not select ’+ reduce ==

4 ;

5 500 iota 1 + dup p select .

6.10 Mandelbrot set
The so called Mandelbrot set which was discovered by Benoit Mandelbrot is the
archetypal fractal shape. It is generated by successive application of the iteration

zn+1 = z2
n + c (6.1)

3It should be noted that a number is automatically treated as a string in this context.

72 6. PROGRAMMING EXAMPLES

to the points of a grid on the complex number plane where c represents the individual
grid points. It can be shown that the absolute value of the elements of the sequence
generated by this iteration formula for a given c is unbounded if it exceeds 2.

Normally the values c to be considered are generated by two nested loops covering the
area of the complex plane in question. Then (6.1) is applied to each c in a third loop
until it either diverges or until a maximum number of iterations has been reached. The
number of iterations this last loop performed until it terminates is then used to select
a color denoting the behavior of this particular c.

It is noteworthy that generating a Mandelbrot set can be done without any explicit
loops in an array language. The program shown in the following first defines three
word: d2c takes two scalar values and creates a complex number by compressing and
dressing the resulting array. iterate is a unary word expecting a complex number.
This word performs the actual iterations without any loop at all: The basic iteration
step

dup * over +

is defined as a string which is then repeatedly stored into an array using reshape.
This array is then executed as a Lang5-program.4 The third word, print line prints
one single line of the Mandelbrot set: The value generated by applying (6.1) to every
c is used to select one character out of a string containing a number of characters of
decreasing blackness. The main program sets up a two-dimensional array of complex
numbers on which iterate operates.

1 : d2c(*,*) 2 compress ’c dress ; # Make a complex number.

2

3 : iterate(c) [0 0](c) "dup * over +" steps reshape execute ;

4

5 : print_line(*) "#*+-. " "" split swap subscript "" join . "\n" . ;

6

7 75 iota 45 - 20 / # x coordinates

8 29 iota 14 - 10 / # y cordinates

9 ’d2c outer # Make complex matrix.

10

11 10 ’steps set # How many iterations?

12

13 iterate abs int 5 min ’print_line apply # Compute & print

1 $ lang5 apple.5

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..Trig..NT..

3 loading stdlib.5: Const..Misc..Stk..Struct..

4 loading apple.5

5

6

4Effectively this closely resembles the process of loop unrolling performed by optimizers in compilers.

6.11. GAME OF LIFE 73

7

8 #

9 * **

10 ##*

11 *#####

12 +*####*- *

13 *###############*#*#*

14 #*###################

15 * *#####################-*

16 -##*###*..*#######################

17 *#################################

18 *###################################

19 +*#*#*#***####################################*

20 *###################################

21 *#################################

22 -##*###*..*#######################

23 * *#####################-*

24 #*###################

25 *###############*#*#*

26 +*####*- *

27 *#####

28 ##*

29 * **

30 #

31

32

33

6.11 Game of Life
In 1970, the British mathematician John Horton Conway developed a two-dimensional
cellular automaton based on four simple rules which should become the icon of a
decade. This automaton consists of cells on a toroidal surface which are connected to
their eight direct neighbors each. A cell is in one of two states at every moment: alive
or dead as determined by this set of rules:

1. A cell being alive dies if it has less than two neighbor cells being alive.

2. It also dies if there are more than three neighbor cells being alive.

3. A dead cell will change its state to alive when it has exactly three neighbor cells
which are alive.

4. A living cell continues to live if it has two or three living neighbor cells.

The main program shown below makes use of the loop unrolling trick shown in sec-
tion 6.10 by creating an instruction array containing elements of the form print field

74 6. PROGRAMMING EXAMPLES

iterate and executing these instructions. The word print field prints the field on
which the cells live while iterate performs the actual iteration of the cellular automa-
ton.

The number of neighbor cells being alive is determined by a trick: The current state of
the automaton which is represented by a two-dimensional array is copied eight times.
Each of these copies is then rotated by ±1 horizontally, vertically and diagonally. The
state of a cell is represented by the values 0 and 1 representing the states dead and alive
respectively. Summing these eight matrices yields the number of neighbor cells being
alive. This value is then used to determine the new state of every cell by applying the
locally defined binary word rule which implements the rule set shown above.

1 #

2 # This is a 5-implementation of Conway’s Game-of-Life.

3 #

4 # The idea is to create eight matrices, based on the Game-of-Life matrix,

5 # where a 1 denotes a living cell while a 0 denotes a dead cell. These eight

6 # matrices are the result of eight matrix rotations (left, right, up, down,

7 # upper left, upper right, lower left, lower right). These eight matrices are

8 # then summed to determine the number of neighbours of each cell. After that

9 # the standard Game-of-Life-rules are applied to the original matrix and the

10 # neighbour sum matrix to determine the new population.

11 #

12 : print_field # Pretty print the field of cells with a frame.

13 : print_line(*) [" " "*"] swap subscript "" join ’! . . ’! . "\n" . ;

14

15 dup shape expand drop swap drop 2 + ’- swap reshape "" join dup . "\n" .

16 swap ’print_line apply drop . "\n" .

17 ;

18

19 : iterate # Perform one Game-of-Life-iteration

20 : rule(*,*) swap if dup 2 >= swap 3 <= && else 3 == then ;

21

22 # Rotate the matrix in all eight directions and sum these eight matrices:

23 dup [1 0] rotate swap

24 dup [-1 0] rotate swap

25 dup [0 1] rotate swap

26 dup [0 -1] rotate swap

27 dup [1 1] rotate swap

28 dup [-1 1] rotate swap

29 dup [1 -1] rotate swap

30 dup [-1 -1] rotate swap

31

32 9 -1 _roll + + + + + + + rule

33 ;

34

35 : create_matrix(*) "" split " " ne ;

36

37 # Setup the start matrix - in this case it only contains a glider:

6.11. GAME OF LIFE 75

38 [

39 " "

40 " "

41 " "

42 " * "

43 " * "

44 " *** "

45 " "

46 " "

47 " "

48]

49

50 # Perform 100 iterations:

51 create_matrix "print_field iterate" 100 reshape execute

The start configuration defined in the program shown above is the so called glider. This
cell configuration exhibits a repetitive pattern and slowly moves through the living
space of the automaton.5

1 $ lang5 gol.5

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..Trig..NT..

3 loading stdlib.5: Const..Misc..Stk..Struct..

4 loading gol.5

5 ------------------

6 ! !

7 ! !

8 ! !

9 ! * !

10 ! * !

11 ! *** !

12 ! !

13 ! !

14 ! !

15 ! !

16 ------------------

17 ------------------

18 ! !

19 ! !

20 ! !

21 ! !

22 ! * * !

23 ! ** !

24 ! * !

25 ! !

26 ! !

27 ! !

5It should be noted that the Game-of-life cellular automaton has been shown to be Turing complete, i.e.
it is as powerful as a universal Turing machine from a computational point of view.

76 6. PROGRAMMING EXAMPLES

28 ------------------

29 ------------------

30 ! !

31 ! !

32 ! !

33 ! !

34 ! * !

35 ! * * !

36 ! ** !

37 ! !

38 ! !

39 ! !

40 ------------------

41 ------------------

42 ! !

43 ! !

44 ! !

45 ! !

46 ! * !

47 ! ** !

48 ! ** !

49 ! !

50 ! !

51 ! !

52 ------------------

6.12 Ulam spiral
The so called Ulam spiral is a simple yet interesting way to visualize the distribution
of prime numbers. The idea is simple: Generate a rectangular spiral of natural num-
bers, starting with 2 in the middle. Then leave out the places of non-prime numbers
so that only the prime numbers remain. The resulting structure shows intriguing pat-
terns which are connected to polynomials generating rather long sequences of prime
numbers.

The following program is a bit more tricky than the examples shown before. Figuring
out its operation is left as an exercise to the reader.

1 : ulam_spiral

2 : seq

3 : zip(*,*) 2 compress " " join ;

4 : subsubseq swap 2 2 compress reshape ;

5 : subseq

6 0 pick [0 1] subsubseq 1 pick [1 0] subsubseq

7 2 pick 1 + [0 -1] subsubseq 3 pick 1 + [-1 0] subsubseq

8 5 roll drop append append append

6.12. ULAM SPIRAL 77

9 ;

10

11 dup 2 reshape 1 compress

12 over iota 2 * 1 + "subseq append" 3 pick reshape zip execute

13 over 2 * [0 1] subsubseq append ’+ spread

14 ;

15

16 : print_line(*)

17 : rpl(*) dup not if drop "" then ;

18 rpl "\t" join . "\n" .

19 ;

20

21 seq swap 2 * 1 + 2 ** iota 1 + dup prime swap and swap scatter

22 ’print_line apply drop

23 ;

24

25 4 ulam_spiral

The output of the program shown above is too small to show the patterns of mostly
diagonal lines containing prime numbers, but it shows the basic form of such a Ulam

spiral:

1 $ lang5 ulam.5

2 loading mathlib.5: Const..Basics..Set..Stat..Cplx..P..LA..Graph..Trig..

3 NT..

4 loading stdlib.5: Const..Misc..Stk..Struct..

5 loading ulam.5

6 73 79

7 43 47

8 71 23

9 41 7

10 19 2 11 53

11 5 3 29

12 67 17 13

13 37 31

14 61 59

7 Interpreter anatomy

The following sections provide a short walk-through of the Lang5-interpreter’s source
code. This is by no means a thorough description of every implementation detail, it is
intended to serve as a starting point for more thorough evaluation by the reader.

7.1 The wrapper lang5
Since the Lang5-interpreter itself is encapsulated in a Perl module Lang5.pm, the ac-
tual user-interface is implemented in the file lang5 which can be found in the main
directory of the interpreter directory tree. First of all, a Lang5-object is instantiated
like this:

1 my $fip = Lang5->new(

2 log_level => $opt{debug_level},

3 number_format => $opt{format},

4 text_callback => sub {

5 $line_count += tr/\n/\n/ for @_;

6 print $OUT @_;

7 },

8 libdir => "$Bin/lib",

9 libautoload => !$opt{nolibs},

10);

All of the interpreter’s functionality can now be accessed via $fip. Following this, a
signal handler for catching SIGINT is registered and storing the current system time is
stored.

The interpreter can operate in three modes which are partially mutual exclusive:

Evaluating a program specified on the command line: In this mode, a (short) pro-
gram which is included in double quotes following the -e qualifier, is executed
immediately. This is controlled by $opt{evaluate} which reflects -e.

Batch mode: If any source files are specified on the command line their contents will
be read and executed by the interpreter. This is done by looping over the contents
of ARGV which do no longer contain any qualifiers and other parameters since
these are already removed by GetOptions.

Interactive mode: This mode is mutually exclusive with the -e option. In interactive
mode, commands are read from the standard input using readline.

80 7. INTERPRETER ANATOMY

In either case a Lang5-program is executed by calling execute which expects a refer-
ence to the Lang5-object, a reference to an array containing the lines of source to be
executed and a handle for output. It then performs the following actions:

1 $fip->add_source_line($_) # Build a program from the individual lines.

2 for @$lines;

3 $fip->execute(); # Execute the program.

4 if ($fip->error()) { # Handle any errors which occurred.

5 ...

6 }

The remaining parts of lang5 mostly deal with handling statistical data and printing
a usage summary if the program has been called with invalid options.

The following sections are focused on the Lang5-interpreter itself which is contained
in the file perl modules/Lang5.pm.

7.2 Parsing
The first step for executing a Lang5-program is to build a nested data-structure rep-
resenting the program in a form that makes it easy for the interpreter to perform the
necessary actions.

The method add source line is called for every single line of source code. It skips
empty lines and gets rid of invalid characters which are normally caused by sloppy
typing such as holding the ALT key after typing a closing square bracket for to long
so that a single space character will become an ALT-space. Other valid characters like
single quotes, double quotes and quoted backslashes are escaped by replacing them
by constants like CTSQ . This simplifies the following tasks of the parser.

Special treatment is necessary for word headers consisting of an initial colon and a
word name with optional parentheses. The hash %re used to detect a word header
contains some regular expressions which are used throughout the interpreter:

1 my %re = (

2 float => qr/ˆ([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/,

3 whead => qr/\S+\{\[.+?\}/,

4 strob => qr/\Qbless(do{\(my \E\$o = (’.*’)\Q)}, ’Lang5::String’)/,

5);

The regular expression stored in the entry float matches a floating point number, that
stored in whead has been mentioned above and strob contains a regular expression
which is used to detect Lang5::String objects.

Since keywords in Lang5-source code are mainly separated by white-space, it is
necessary to protect strings which might contain white-spaces from further pro-

7.2. PARSING 81

cessing. This is done using the function secure string. After removing any com-
ments the line processed like this is finally appended to an array referenced by
$self->{ line buffer}.

To get an impression of the preprocessing operations performed by add source line

the following short example program is considered:

1 : loop_example

2 1 do dup . 1 + dup 5 > if break then loop

3 ;

4

5 loop_example "Loop finished. Now print an array:" .

6 [[1 2] [3 4]] .

After processing every single line of this program with add source line the buffer
$self->{ line buffer} contains the following data:1

$1 = [

’: loop_example’,

’ 1 do dup . 1 + dup 5 > if break then loop ’,

’;’,

’loop_example {4c6f6f702066696e69736865642e204e6f77207072696e742061

6e2061727261793a} .’,

’[[1 2] [3 4]] .’

];

After all lines of a Lang5-program are processed like this, the method execute is
called which in turn calls parse source. This function splits the lines contained in
$self->{ line buffer} on white-space and square brackets and takes care that square
brackets are not removed during this operation. Applied to the example program
above, the result of this call is this data-structure:

$1 = [

’:’,

’loop_example’,

’1’,

’do’,

’dup’,

’.’,

’1’,

’+’,

’dup’,

’5’,

’>’,

1Printed with Data::Dumper.

82 7. INTERPRETER ANATOMY

’if’,

’break’,

’then’,

’loop’,

’;’,

’loop_example’,

bless(do{\(my $o = ’Loop finished. Now print an array:’)},

’Lang5::String’),

’.’,

’[’,

’[’,

’1’,

’2’,

’]’,

’[’,

’3’,

’4’,

’]’,

’]’,

’.’

];

Clearly the two-dimensional array to be printed at the end of the example program
needs some further processing since the process of splitting the source into a stream
of tokens just returned a sequence of square brackets and values which have to be
assembled into an array for further processing. This is done in transmogrify arrays.
Applied to the structure shown above it returns this:

$1 = [

’:’,

’loop_example’,

’1’,

...

’.’,

[

[

’1’,

’2’

],

[

’3’,

’4’

]

],

’.’

];

7.2. PARSING 83

The array specified as [[1 2][3 4]] in the source code is now represented by a real
two-dimensional array. The next step of the parser handles control structures like
if. . .else. . .then and do. . .loop. This is done by calling if do structures which
transforms the data-structure in the line buffer into this:

$1 = [

’:’,

’loop_example’,

’1’,

’do’,

[

’dup’,

’.’,

’1’,

’+’,

’dup’,

’5’,

’>’,

’if’,

[

’break’

]

],

’;’,

’loop_example’,

bless(do{\(my $o = ’Loop finished. Now print an array:’)},

’Lang5::String’),

’.’,

[

[

’1’,

’2’

],

[

’3’,

’4’

]

],

’.’

];

The program’s structure is now represented by a nested data-structure which is then
used by the central interpreter routine execute.

84 7. INTERPRETER ANATOMY

7.3 execute

execute is the heart of the interpreter. It acts on a data-structure like that shown be-
fore and effectively executes a program by traversing this structure. It is implemented
as a finite-state machine with the following states:

1 use constant {

2 STATE_RUN => 0,

3 STATE_START_WORD => 1,

4 STATE_EXPAND_WORD => 2,

5 STATE_SKIP_WORD_DEFINITION => 3,

6 STATE_EXECUTE_IF => 4,

7 STATE_EXECUTE_ELSE => 5,

8 STATE_IF_COMPLETED => 6,

9 STATE_EXECUTE_DO => 7,

10 STATE_BREAK_EXECUTED => 8,

11 };

Beginning with the initial state STATE RUN, execute loops over the elements of the ar-
ray containing the preprocessed and parsed program. execute calls itself recursively
whenever a nested program part controlled by a conditional or a loop is encountered.

Exercise 24:
Draw a state diagram of execute. Note that the sequence of the conditionals which
control the state transitions in the source code is essential for correct operation
(explain why).

7.4 Built-ins etc.
execute relies on a nested data-structure quite similar to that shown in the simple
RPN parser of section 2.1. This structure is contained in a hash %builtin and looks like
this:

1 my %builtin = (

2

3 ### niladic operators

4 exit => {

5 desc => ’Leave the interpreter immediately.’,

6 type => ’niladic’,

7 code => sub { $_[0]->{_exit_called} = 1; },

8 },

9 ...

10 ### unary operators

11 ’?’ => {

12 desc => ’Generate a pseudo random number.’,

7.4. BUILT-INS ETC. 85

13 type => ’unary’,

14 pop => [qw/X/],

15 push => [qw/I/],

16 ntrl => 0,

17 code => sub { rand($_[1]); },

18 },

19 ...

20 ### binary operators

21 # direct mapping to perl operators

22 # with 0 as neutral element

23 (map {

24 $_ => {

25 desc => "Basic binary operator $_, neutral element: 0.",

26 type => ’binary’,

27 pop => [qw/X X/],

28 push => [qw/S/],

29 ntrl => 0,

30 code => eval("sub { no warnings qw/numeric/;

31 \$_[2] $_ \$_[1] }"),

32 }

33 } qw(

34 + -

35)),

36 ...

Every built-in operator/function is represented by an entry in this hash which refer-
ences a nested hash containing the following keys:

desc: This entry contains a short help text describing the operation.2

type: Any language element is of a specific type which is stored in this entry. Possible
values are: niladic, unary, binary, function, variable3

pop: This entry describes how many values are popped from the stack by an operation
and the expected type of these values. Possible values are:

A: Array

BO: Binary operator

I: Integer value

F: Floating point value

PI: Positive integer value

V: A valid variable name

S: Any scalar value

2See section 5.6.4.
3These types are normally referred to only by their first letter in the source code.

86 7. INTERPRETER ANATOMY

X: Any value

U: A user defined word

N: A name of a user defined word or variable

These values are used for automatic checks of the values before executing a built-
in. Central element for this type checking is the dispatch table %param checks

which maps these type descriptors to check functions.

push: This describes what will be pushed back onto the stack.4

ntrl: Value of the neutral element which will be returned if one of the arguments of
the operator/function is undefined.

code: The actual functionality of the built-in.

Since unary and binary operations are automatically applied in an element-wise
way onto nested data-structures, the interpreter core execute relies on two subrou-
tines unary and binary which in turn call unary and binary from the Perl module
Array::DeepUtils which contains the (sometimes rather complicated) array handling
capabilities.

7.5 Stacks
The central data-structure of any Lang5-program is the stack onto which all operands
are placed before they can be processed. Pushing a value onto the stack is straight-
forward as long as this value is a scalar. In this case

push \@\$stack, \$element + 0;

is executed.

Exercise 25:
Explain the rationale behind the + 0 operation in the statement above.

When an array is to be pushed onto the stack, things are a bit more complex. A simple

push \@\$stack, \$element

would push a reference to the array onto the stack. If this array was read from a
variable this had the effect that any changed on the array on the stack would affect
the value of the variable through the reference.5 To avoid this problem any nested
data-structure which is to be pushed onto the stack is first copied using dclone from
Array::DeepUtils. dclone problem. . .

4This information is not currently used by the interpreter.
5In fact, this was a bug in the interpreter which was only detected and corrected recently (after more

than two years of development).

7.6. LOCAL STACKS 87

7.6 Local stacks
Although all operators, functions and words could operate on a single central stack
this would pose the risk of changing values on the central stack by side-effects. To
avoid this risk, the Lang5-interpreter creates a local stack every time an operation is to
be performed. In the case of a unary or binary operation, one or two values are fetched
from the central stack and pushed onto a temporary stack on which the operation itself
acts.

Whatever will be found in the top-most stack element of such a local stack after the
execution of the operator or the like has finished will be pushed onto the central stack
and the local stack will be destroyed.

Exercise 26:
Why isn’t it necessary to use dclone when pushing the arguments onto the local

stack for an unary or binary operator? Why does pushing a reference suffice and
not cause unwanted side effects?

7.7 Questions
Exercise 27:

1. Follow the operation of the Lang5-interpreter by executing a simple program
without loading the standard libraries6 by specifying the -n qualifier. To trace
the operation of the interpreter specify -d TRACE on the command line.

2. Analyze the structure which results from a user defined word. Therefore fol-
low the program flow starting with the state STATE START WORD of the finite-
state machine in execute.

3. Explore how overloading user defined words actually works. Central to this
functionality is the subroutine get func.

8 Extending Perl

All of the nice array-handling functionality of Lang5 are also available to pure-Perl by
means of the Array::APX package which overloads some of the built-in operators of
Perl and introduces some useful methods for dealing with nested data-structures. This
module is in fact a wrapper around Array::DeepUtils.1

The following example shows how the element-wise product of two vectors can be
computed using this module:

1 use strict;

2 use warnings;

3 use Array::APX qw(:all);

4

5 # Create two vectors [1 2 3] and [4 5 6]:

6 my $x = iota(3) + 1;

7 my $y = iota(3) + 3;

8

9 # Multiply both vectors and print the result:

10 print $x * $y;

A noteworthy feature of Array::APX is that some of Perl’s standard operators are not
only overloaded to operate on APX-objects but also act as reduce operator or as outer
product. The reduce operator is represented by / as in APL:

1 use strict;

2 use warnings;

3 use Array::APX qw(:all);

4

5 # Create a vector [1 .. 100]:

6 my $x = iota(100) + 1;

7

8 my $adder = sub {$_[0] + $_[1]};

9 print ’The sum of all elements is ’, $adder / $x, "\n";

Outer products are specified by enclosing a binary operator which in fact is a reference
to a suitable subroutine in pipe symbols:

1Array::APX has been introduced at the YAPC::Europe 2012, see [Ulmann 2012]. The source of this
module can be found at http://cpansearch.perl.org/src/VAXMAN/Array-APX-0.3/lib/Array/APX.pm.

90 8. EXTENDING PERL

1 use strict;

2 use warnings;

3 use Array::APX qw(:all);

4

5 my $x = iota(10) + 1;

6 my $m = sub {$_[0] * $_[1]};

7

8 print $x |$m| $x;

Implementing the algorithm for generating a list of primes shown in section 1.2 using
Array::APX is quite straight-forward:

1 use strict;

2 use warnings;

3 use Array::APX qw(:all);

4

5 my $f = sub { $_[0] * $_[1] }; # We need an outer product

6 my $x;

7

8 print $x->select(!($x = iota(199) + 2)->in($x |$f| $x));

The Array::APX module and additional documentation can be found on CPAN.2

2http://search.cpan.org

A A simple arithmetic
expression parser

1 /*
2 ** Simple parser for arithmetic integer expressions of the

3 ** following form:

4 **
5 ** <expression> = <factor>

6 ** | <factor> [+-/*] <factor>

7 **
8 ** <factor> = (<expression>)

9 ** | -(<expression>)

10 ** | <constant>

11 ** | -<constant>

12 **
13 ** <constant> = [0-9]

14 ** | <constant>[0-9]

15 **
16 */

17

18 #include <stdio.h>

19 #include <string.h>

20 #include <ctype.h>

21

22 #define STRING_LENGTH 133

23

24 char *gbl$pos; /* Pointer into the string to be parsed */

25 int gbl$error = 0; /* Error flag - incremented by each error */

26

27 /* Get rid of an optional ’\n’ character at the end of a string */

28 void chomp(char *string)

29 {

30 int last = strlen(string) - 1;

31 if (last >= 0 && string[last] == ’\n’)

32 string[last] = (char) 0;

33 }

34

35 /* Parse a constant and return its integer value */

36 int constant()

92 APPENDIX A. A SIMPLE ARITHMETIC EXPRESSION PARSER

37 {

38 int result = 0;

39

40 /* Loop over the digits of the constant and update the result */

41 while (*gbl$pos && isdigit(*gbl$pos))

42 result = result * 10 + (*gbl$pos++ - ’0’);

43

44 return result;

45 }

46

47 /* Evaluate a factor in an expression */

48 int factor()

49 {

50 int minus, result;

51

52 /* Check for an optional minus sign, remember and get rid of it */

53 if (minus = (*gbl$pos == ’-’)) gbl$pos++;

54

55 /* Does the factor start with a parenthesis? */

56 if (*gbl$pos == ’(’)

57 {

58 gbl$pos++; /* Skip the parenthesis */

59 result = expression();

60 if (gbl$error) return 0;

61

62 if (*gbl$pos == ’)’)

63 gbl$pos++;

64 }

65 else /* No parenthesis, just a constant to follow */

66 result = constant();

67

68 return minus ? -result : result;

69 }

70

71 int expression() /* Evaluate an expression */

72 {

73 char operator;

74 int result, expr;

75

76 /* If an expression ends with an operator not followed by another

77 ** factor we will end up here with gbl$pos pointing to the

78 ** trailing null character of the string, which denotes an error.

79 */

80 if (!*gbl$pos)

81 {

82 printf("\texpression(): Empty string!\n");

83 gbl$error++;

93

84 return 0;

85 }

86

87 /* An expression consists of at least one factor */

88 result = factor();

89 if (gbl$error) return 0;

90

91 /* If there are chars left, the next one must be an operator */

92 if (*gbl$pos)

93 {

94 operator = *gbl$pos++;

95

96 /* Calculate <expression> <operator> <expression> */

97 switch(operator)

98 {

99 case ’+’:

100 result += expression();

101 break;

102 case ’-’:

103 result -= expression();

104 break;

105 case ’*’:

106 result *= expression();

107 break;

108 case ’/’:

109 result /= expression();

110 break;

111 }

112 }

113

114 return result;

115 }

116

117 int main()

118 {

119 char string[STRING_LENGTH];

120 int result;

121

122 for(;;) /* Endless loop for user input and processing */

123 {

124 printf("Expression: ");

125

126 /* Read user input - leave the loop on EOF */

127 if (!fgets(string, sizeof(string), stdin)) break;

128

129 chomp(string);

130 gbl$pos = string; /* All functions rely on this global ptr */

94 APPENDIX A. A SIMPLE ARITHMETIC EXPRESSION PARSER

131

132 result = expression();

133 if (gbl$error) /* Any errors so far? */

134 {

135 printf("\tmain(): Error evaluating \"%s\"\n", string);

136 gbl$error = 0; /* Reset error counter */

137 }

138 else

139 printf("\tResult = %d\n", result);

140 }

141

142 printf("Parser ended.\n");

143 return 0;

144 }

Exercise 28:

1. Extend the parser by adding binary operators for exponentiation (**), modulo
(%) etc.

2. Add a unary operator ! to calculate the factorial of a number.

3. Change the parser so that it evaluates expressions from left to right.

B Special purpose variables

There are a couple of variables that control the operation of the Lang5-interpreter.
These variables can be set during run time like other variables which will affect the
interpreter’s behavior accordingly. Currently the following special variables are sup-
ported:

log level: Normally this variable will be set to "ERROR" causing the interpreter to
log error messages only. Possible values for this special variable are "TRACE",
"DEBUG", "INFO", "WARN", "ERROR" and "FATAL". This variable should not be
changed unless one really needs to get more information about the operation
of the interpreter. Especially the settings "DEBUG" and "INFO" will generate sub-
stantial amounts of output – and are only useful for debugging the interpreter
itself.

number format: The main function to print values, ., uses the format description
found in this variable for printing scalar values. By default this variable is set to
"%4s".

terminal width: Some functions like dump need to know about the size of the termi-
nal being used which is specified using this special variable.

C The standard library

###

stdlib.5, the standard library for 5.

###

Internal variables are always prefixed by ’_<word>’ to avoid collisions

between different words.

###

"loading stdlib.5: " .

#==

"Const.." .

: STDIN 0 ;

: STDOUT 1 ;

: STDERR 2 ;

#==

"Misc.." . # Housekeeping words.

Stack pretty printer (non-desctructive).

: .s

depth 0 == if "Stack is empty!\n" . break then

"vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv\n" .

"Stack contents (TOS at bottom):\n" .

depth compress dup

do

length 0 == if break then

0 extract .

loop

drop expand drop

"\nˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ\n" .

;

Print a list of all variables known to the interpreter.

: .v

"Variables:\n" .

vlist # Get list of all variable names.

do # Process the list.

length 0 == if break then # Anything left to print?

0 extract # Get name to be printed.

dup "\t--->\t" # Prepare string to be printed.

98 APPENDIX C. THE STANDARD LIBRARY

rot eval # Get value of variable.

"\n" 4 compress "’" join . # Make string and print line.

loop drop

;

explain a word.

: explain dump . ;

Save the current workspace - expects destination filename on TOS.

: save

: uxplain(*) explain ;

depth 1 < if "save: Not enough elements on stack!\n" panic then

type ’S ne if "save: scalar as filename expected!\n" . break then

"Saving workspace to " over ": " 3 compress "" join .

’> swap open ’_save_destination set

_save_destination fout

wlist vlist append uxplain drop

STDOUT fout

_save_destination close ’_save_destination del

"done\n" .

;

Read a file (the filename is expected to be in TOS) and create an array

containing one record of this file per element.

: slurp

depth 1 < if "slurp: Not enough elements on stack!\n" panic then

type ’S ne if "slurtp: Scalar as filename expected!\n" panic then

’< swap open ’__slurp_fh set __slurp_fh fin

[]

do

eof if break then

read append

loop

__slurp_fh close ’__slurp_fh del

STDIN fin

;

#==

"Stk.." .

Duplicate the two topmost elements on the stack.

: 2dup

depth 2 < if "2dup: Not enough elements on stack!\n" panic then

over over

;

Remove all elements from stack.

: clear

99

depth 0 > if depth compress drop then

;

Generalized drop, TOS = depth.

: ndrop

depth 1 < if "ndrop: Not enough elements on stack!\n" panic then

type ’S ne if "ndrop: TOS is not scalar!\n" panic then

compress drop

;

Generalized over - it expects the position of the element to be picked

at the TOS.

: pick

depth 1 < if "pick: Not enough elements on stack!\n" panic then

type ’S ne if "pick: TOS is not scalar!\n" panic then

compress swap dup rot rot 1 compress append expand drop

;

Generalized rot, TOS = depth.

: roll 1 _roll ;

rotate the topmost 3 elements

: rot 3 1 _roll ;

#==

"Struct.." .

Append a scalar or a vector to another vector.

: append

depth 2 < if "append: Not enough elements on stack!\n" panic then

type ’S eq if 1 compress then

type ’A ne if "append: Not an array!\n" panic then

swap

expand dup 2 + roll

expand dup 2 + roll

+ compress

;

Deep reduce - this word will reduce a nested structure to a single scalar

regardless if its depth.

: dreduce

over type ’A ne if "dreduce: TOS-1 is not an array!\n" panic then drop

swap collapse swap reduce

;

Extract an element from an array (subscript and remove combined) - TOS

contains the element’s number while TOS-1 contains the array.

: extract

depth 2 < if "extract: Not enough elements on stack!\n" panic then

100 APPENDIX C. THE STANDARD LIBRARY

type ’S ne if "extract: TOS is not scalar!\n" panic then

over

type ’A ne if "extract: TOS-1 is not an array!\n" panic then drop

2dup 1 compress subscript rot rot remove swap expand drop

;

"\n" .

D The mathematical library

#

mathlib.5 contains various word definitions to deal with sets,

statistics or to plot data.

#

This module makes use of the following dresses:

#

(c) Complex numbers

(m) Matrix

(p) Polar coordinates

(s) Set

(v) Vector

"loading mathlib.5: " .

#==

"Const.." .

Useful constants:

: pi 1 1 atan2 4 * ;

: e 1 exp ;

: eps 1.e-10 ; # This is used in comparison operators etc.

#==

"Basics.." .

Calculate the factorial.

: !(*) iota 1 + ’* reduce ;

Absolute value.

: abs(*)dup 0 < if neg then ;

Maximum of the two topmost stack elements:

: max(*,*) 2dup - 0 < if swap then drop ;

Minimum of the two topmost stack elements:

: min(*,*) 2dup - 0 > if swap then drop ;

#==

"Set.." .

102 APPENDIX D. THE MATHEMATICAL LIBRARY

distinct removes all elements from a set which occur more than once. As a

side effect the resulting distinct set will be sorted.

: distinct(s)

strip

length 2 < if ’s dress break then # Nothing to do for an empty set.

grade subscript # Sort the array representing the set.

dup dup

[-1] remove [undef] swap append # Right shift the sorted array.

== not select # Determine the duplicates, negate the

resulting boolean vector and select

’s dress # the unique elements.

;

Return the intersection of two sets.

The result is a set without duplicates.

: intersect(s,s)

distinct strip swap distinct strip over in select ’s dress

;

subset expects two sets on the stack and tests if the one on the TOS is

a subset of the one below it. In this case a 1 is left on the TOS,

otherwise 0 is returned.

: subset(s,s) strip swap strip swap in ’&& reduce ;

Return the union of two sets without duplicates.

: union(s,s) strip swap strip append ’s dress distinct ;

#==

"Stat.." .

Calculate arithmetic mean of the elements of a vector.

: amean

depth 1 < if "amean: Stack is empty!\n" panic then

type ’A ne if "amean: TOS is not an array!\n" panic then

length 0 == if drop 0 break then

dup ’+ reduce swap length swap drop /

;

Compute the cubic mean of the elements of a vector:

((x ** 3 + x ** 3 + ... + x ** 3) / n) ** (1 / 3)

0 1 n - 1

: cmean

depth 1 < if "cmean: Stack is empty!\n" panic then

type ’A ne if "cmean: TOS is not an array!\n" panic then

length 0 == if drop 0 break then

3 hoelder

;

Compute the geometric mean of the elements of a vector:

103

(x * x * ... * x) ** (1 / n)

0 1 n - 1

: gmean

depth 1 < if "gmean: Stack is empty!\n" panic then

type ’A ne if "gmean: TOS is not an array!\n" panic then

length 0 == if drop 0 break then

length swap ’* reduce swap 1 swap / **

;

Compute the harmonic mean of the elements of a vector:

n / (1 / x + 1 / x + ... + 1 / x)

0 1 n - 1

: hmean

depth 1 < if "hmean: Stack is empty!\n" panic then

type ’A ne if "hmean: TOS is not an array!\n" panic then

length 0 == if drop 0 break then

-1 hoelder

;

Compute the hoelder mean of the elements of a vector:

((x ** k + x ** k + ... + x ** k) / n) ** (1 / k)

0 1 n - 1

: hoelder

depth 2 <

if "hoelder: This word needs two words on the stack!\n" panic then

type ’S ne if "hoelder: TOS is no a scalar!\n" panic then

swap type ’A ne if "hoelder: TOS-1 is not an array!\n" panic then swap

over length swap drop 0 == if drop drop 0 break then

swap length swap 2 pick ** ’+ reduce swap / 1 rot / **

;

Compute the median of the elements of a vector. The result is computed

like this for a sorted vector:

/ x for an odd number of elements

! (n + 1) / 2

x = <

median ! (x + x) / 2 for an even number of elts

\ n / 2 n / 2 + 1

#

: median

depth 1 < if "median: Stack is empty!\n" panic then

type ’A ne if "median: TOS is not an array!\n" panic then

length 0 == if drop 0 break then

grade subscript # Sort the vector elements.

length dup 2 %

0 == if # The vector has an even number of elements.

2 / 2dup

1 - 1 compress subscript expand drop

rot rot

104 APPENDIX D. THE MATHEMATICAL LIBRARY

1 compress subscript expand drop

+ 2 /

else # Odd number of vector elements.

1 + 2 / 1 - 1 compress subscript expand drop

then

;

Compute the quadratic mean of the elements of a vector:

sqrt((x ** 2 + x ** 2 + ... + x ** 2) / n)

0 1 n - 1

: qmean

depth 1 < if "qmean: Stack is empty!\n" panic then

type ’A ne if "qmean: TOS is not an array!\n" panic then

length 0 == if drop 0 break then

2 hoelder

;

#==

"Cplx.." . # Functionality for dealing with complex numbers.

Overload ’abs to return the absolute value of a complex number.

: abs(c)

strip 2 ** ’+ reduce sqrt

;

Overload ’neg to perform the complement operation on a complex number.

: neg(c)

strip [1 -1] * ’c dress

;

Addition of two complex numbers.

: +(c,c)

strip swap strip + ’c dress

;

Subtraction of two complex numbers.

: -(c,c)

strip swap strip swap - ’c dress

;

Multiplication of two complex numbers.

: *(c,c)

strip swap strip swap

[0 1 0 1] subscript swap [0 1 1 0] subscript

* expand drop

+ rot rot - swap

2 compress ’c dress

;

105

Division of two complex numbers.

: /(c,c)

strip dup 2 ** ’+ reduce

rot strip rot

[0 1 0 1] subscript swap [0 1 1 0] subscript

* reverse expand drop

+ rot rot swap - 2 pick / rot rot swap / swap

2 compress ’c dress

;

Return the real part of a complex number.

: re(c)

strip expand drop drop

;

Return the imaginary part of a complex number.

: im(c)

strip expand drop swap drop

;

Convert a complex number to a polar coordinate tuple.

: polar(c)

strip dup

2 ** ’+ reduce sqrt # This yields the radius.

swap

dup [0 0] == ’&& reduce

if "Can not convert zero cplx to polar!\n" panic then

expand drop atan2 # This yields phi.

2 compress ’p dress # Make a polar coordinate tuple.

;

Convert a polar coordinate tuple to a complex number.

: complex(p)

strip expand drop 2dup

cos * rot rot sin *

2 compress ’c dress

;

Overload == for comparing complex numbers.

: ==(c,c)

strip swap strip - abs eps < ’&& reduce

;

Overload != for comparing complex numbers.

: !=(c,c)

strip swap strip - abs eps > ’|| reduce

;

#==

106 APPENDIX D. THE MATHEMATICAL LIBRARY

"P.." .

Overload == for polar tuples.

: ==(p,p)

strip swap strip - abs eps < ’&& reduce

;

Overload != for polar tuples.

: !=(p,p)

strip swap strip - abs eps > ’|| reduce

;

#==

"LA.." .

Overload * for matrix-vector-multiplication.

: *(m,v)

Calculate the inner sum of a vector:

: inner+(*) ’+ reduce ;

swap strip shape rot strip swap reshape *

’inner+ apply

’v dress

;

: *(m,m) # Overload ’* for matrix-matrix-multiplication

If we multiply an n*m matrix (columns*rows) by an m*n matrix using the

already existing matrix-vector-multiplication, we will need m copies of

the first matrix. First of all, let us determine m (as a side effect,

this second matrix looses its matrix dress which will be useful soon):

strip shape [1] subscript expand drop

Now we compress the first matrix into an array and reshape it so that

this array will contain m copies of the original matrix:

rot 1 compress swap reshape

Now swap the two arrays

swap

To apply the already existing matrix-vector-multiplication to these two

arrays we have to transpose the topmost two dimensional array and

transform it into a one dimensional array of vectors:

: a2v(*) ’v dress ;

strip 1 transpose ’a2v apply

Now let us apply the existing matrix-vector-multiplication:

*

Since this yields a one dimensional array of vectors, we have to strip

107

the array elements and dress the array itself as being a matrix:

: v2a(v) strip ;

’v2a apply

The result is still transposed, so perform another transposition and

dress it:

1 transpose ’m dress

;

#==

"Graph.." .

array (the name reflects the fact that only the y-coordinates are fed

into gnuplot).

gplot plots a graph based on the elements of a single, one dimensional

: gplot

_gplot_write_data is a unary word to be used with apply to write the

data to be plotted to the gnuplot scratch data file.

: _gplot_write_data(*) . ;

depth 1 < if "gplot: Stack is empty!\n" panic then

type ’A ne if "gplot: TOS is not an array!\n" panic then

"_5_gplot.data" ’__gplot_data_name set

"_5_gplot.cmd" ’__gplot_cmd_name set

’> __gplot_data_name open ’__gplot_fh set

__gplot_fh fout

’_gplot_write_data apply drop

__gplot_fh close

’> __gplot_cmd_name open ’__gplot_fh set

__gplot_fh fout

"set key off\n" .

"plot \"" __gplot_data_name "\" with lines\n" 3 compress "" join .

__gplot_fh close

STDOUT fout

’gnuplot __gplot_cmd_name 2 compress " " join system drop

__gplot_data_name unlink

__gplot_cmd_name unlink

’__gplot_data_name del

’__gplot_cmd_name del

’__gplot_fh del

;

#==

108 APPENDIX D. THE MATHEMATICAL LIBRARY

"Trig.." .

: tan dup sin swap cos / ;

#==

"NT.." .

Places 1 on TOS if TOS was prime, 0 otherwise.

: prime(*)

type ’S ne if "prime: TOS is not scalar!\n" panic then

dup 1 == if drop 0 then

dup 4 < if break then

dup sqrt 2 / int iota 1 + 2 * 1 + [2] swap append % ’&& reduce

;

Return the gcd of two integers

: gcd(*,*)

do

2dup 0 > swap 0 > && not if break then

2dup <= if

over -

else

swap over - swap

then

loop

dup 0 == if drop else swap drop then

;

"\n" .

E Solutions to selected exercises

Solution 2:

1. lang5> 1.25 2 / 2 ** pi * .

1.22718463030851

2. lang5> 2 3 + 5 + 8 + 13 + .

31

lang5> 2 3 5 8 13 + + + + .

31

Using a more sophisticated function, this problem could be solved like this:

lang5> [2 3 5 8 13] ’+ reduce .

31

Solution 3:

1. lang5> [[1 2 3] [4 5 6] [7 8 9]] [[7 6 2] [1 9 5] [3 8 4]] + .

[

[8 8 5]

[5 14 11]

[10 16 13]

]

2. lang5> [[1 2 3] [4 5 6] [7 8 9]] 1 - .

[

[0 1 2]

[3 4 5]

[6 7 8]

]

Solution 4:

110 APPENDIX E. SOLUTIONS TO SELECTED EXERCISES

lang5> 5 do dup . 1 - dup 1 < if break then loop

5

4

3

2

1

Solution 5:
: square dup * ; applied to a vector returns a vector of the same size with the
squares of the elements of the original vector. This is due to the fact that although
the word square itself is not applied in an element-wise fashion to the vector,
the dup duplicates the vector as a whole and the multiplication operator * is then
applied to the elements of these two identical vectors.

Solution 6:

lang5> : binary_print(*,*) . . "------\n" . ;

lang5> [1 2 3] 1 binary_print

1

1

1

2

1

3

Since binary print is a binary word, the interpreter automatically expands the
smaller data structure (the scalar in this case) to match the structure of the larger
argument (the vector). So binary print is implicitly applied to two vectors [1 2

3] and [1 1 1] respectively.

Solution 7:

lang5> : square dup * ;

lang5> [1 2 3 4] ’vector set

lang5> vector square .

[1 4 9 16]

Solution 8:

111

: *(baz,baz)

strip swap strip

* -1 *
’baz dress

;

[1 2 3](baz) [4 5 6](baz) * .

Solution 9:

lang5> : twodup over over ;

lang5> 1 2 twodup .s

vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

Stack contents (TOS at bottom):

1

2

1

2

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Solution 10:

lang5> : twodup 1 pick 1 pick ;

lang5> 1 2 twodup .s

vvvvvvvvvvvvvvvvvvvv Begin of stack listing vvvvvvvvvvvvvvvvvvvv

Stack contents (TOS at bottom):

1

2

1

2

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ End of stack listing ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Solution 11:

: myroll 1 _roll ;

Solution 12:

lang5> : myswap over rot drop ;

lang5> 1 2 myswap . .

1

2

112 APPENDIX E. SOLUTIONS TO SELECTED EXERCISES

Solution 13:

lang5> : mydreduce swap collapse swap reduce ;

lang5> [[1 2] [3 4]] ’+ mydreduce .

10

Solution 14:

lang5> : myfactorial iota 1 + ’* reduce ;

lang5> 5 myfactorial .

120

Solution 15:
To create a n times n identity matrix, a vector looking like [1 0 ...0] containing
n+1 elements is created. This vector is then reshaped into a n times nmatrix. Since
reshape reads the source data structure over and over again to fill the destination
structure, this will eventually produce the identity matrix.

: identity_matrix

dup

1 + iota 0 ==

swap dup 2 compress

reshape

;

3 identity_matrix .

Solution 16:

lang5> 10 iota 2 * 1 + ’+ spread .

[1 4 9 16 25 36 49 64 81 100]

Solution 17:

: compute_mean_grade

Define a support word to get rid of the student names:

: get_second_element(*) ’; split 0 remove ;

slurp # Read in file

0 remove # Remove header line

get_second_element collapse # Create a one-dimensional structure

amean # Compute the mean value

;

113

’grades.dat compute_mean_grade .

Solution 18:

lang5> : largest_only over < select ;

lang5> [1 2 3] [0 2 2] largest_only .

[1 3]

Solution 19:

lang5> : myamean length swap ’+ reduce swap / ;

lang5> [1 2 3 4] myamean .

2.5

Solution 20:

lang5> : setmax ’max spread length 1 - extract ;

lang5> [3 1 4 1 5 9 2 6 5 3 5](s) setmax .

9

lang5>

Solution 21:

lang5> : prime_list 1 - iota 2 + dup prime select ;

lang5> 100 prime_list .

[2 3 5 7 11 13 17 19 23 29 31

37 41 43 47 53 59 61 67 71 73 79

83 89 97]

Solution 22:

: better_sqrt

dup abs sqrt

swap 0 < if

1 2 compress ’c dress

then

;

2 better_sqrt .

-2 better_sqrt .

Another variant, yielding a complex number in every case might look like this:

114 APPENDIX E. SOLUTIONS TO SELECTED EXERCISES

: better_sqrt

dup abs sqrt

swap 0 < 2 compress ’c dress

;

2 better_sqrt .

-2 better_sqrt .

Solution 23:

: myprime(*)

dup sqrt int 1 - dup rot swap reshape

swap iota 2 +

% 0 == ’+ reduce

0 ==

;

Test the unary word myprime:

99 iota 2 + dup myprime select .

Solution 26:
The values which are pushed onto the local stack are automatically removed from
the main stack. Thus, it is sufficient to work with references throughout since there
is only one instance of these values and side-effects are impossible.

Bibliography

[Adams et al. 2009] Jeanne C. Adams, Walter S. Brainerd, Richard A. Hendrickson,
Richard E. Maine, Jeanne T. Martin, Brian T. Smith, The Fortran 2003 Handbook,
Springer, 2009

[Burks et al. 1954] Arthur W. Burks, Don W. Warren, Jesse B. Wright, “An Analysis
of a Logical Machine Using Parenthesis-Free Notation” in Mathematical Tables and
Other Aids to Computation, Vol. 8, No. 46, Apr., 1954, pp. 53–57

[Dr. Dobb’s Journal] Dr. Dobb’s Journal, C Tools, Markt & Technik Verlag, 1986

[Falkoff et al. 1964] A. D. Falkoff, K. E. Iverson, E. H. Sussenguth, “A formal de-
scription of SYSTEM/360”, in IBM Systems Journal, Vol 3, No. 3, 1964, pp. 198–
261

[Gilman et al. 1970] Leonard Gilman, Allen J. Rose, APL\360 an interactive ap-
proach, John Wiley & Sons, Inc., 1970

[Holub 1985] Allen Holub, “Wie Compiler arbeiten”, in [Dr. Dobb’s Journal][pp. 153–
167]

[Iverson 1962] Kenneth E. Iverson, A Programming Language, J. Wiley & Sons, New
York, 1962

[Iverson 1963] Kenneth E. Iverson, “Notation as a Tool of Thought”, in
[N. N. 1981][pp. 105–128]

[Janko 1980] Wolfgang H. Janko, APL 1 – Eine Einführung in die Elemente der Sprache
und des Systems, Athenaeum Verlag, Königstein/Ts., 1980

[Lüneburg 1993] Heinz Lüneburg, Leonardi Pisani Liber Abaci oder Lesevergnügen
eines Mathematikers, BI Wissenschaftsverlag, 1993

[McDonnel 1981] Eugene E. McDonnell, “Introduction”, in [N. N. 1981][p. 11–14]

[N. N. 1981] N. N., A Source Book in APL, APL PRESS, Palo Alto, 1981

[Ousterhout 1998] John K. Ousterhout, “Scripting: Higher Level Program-
ming for the 21st Century”, in IEEE Computer Magazine, March 1998,
http://www.eve.cmu.edu/∼ganger/712.fall02/papers/scripting-
computer98.ps, retrieved 01/14/2010

[Prechelt 2010] Lutz Prechelt, Are Scripting Languages Any Good? A Validation of
Perl, Python, Rexx and Tcl against C, C++, and Java, http://page.mi.fu-berlin.
de/prechelt/Biblio/jccpprt2 advances2003.pdf, retrieved 01/14/2010

116 Bibliography

[Ulmann 2012] Bernd Ulmann, “Array programming for mere mortals”, in Proceed-
ings YAPC::Europe 2012, pp. 37–41

Index
ι, 3
∧, 52
*, 52
**, 52
-, 52
--benchmark, 15
--debug level, 15
--evaluate, 15
--format, 16
--interactive, 16
--nolibs, 16
--statistics, 16
--steps, 17
--time, 17
--version, 17
--width, 17
-b, 15
-d, 15
-e, 15
-f, 16
-i, 16
-n, 16
-sta, 16
-ste, 17
-t, 17
-v, 17
-w, 17
.., 33
.ofw, 62
.s, 34
.v, 62
/, 52
<, 52
<=, 52
<=>, 53
==, 52
===, 52
>, 52
>=, 52

?, 53
$self->{ line buffer}, 81
%, 52
%builtin, 84
%param checks, 86
%re, 80
&, 52
&&, 53
execute, 84
if do structures, 83
parse source, 81
roll, 36
transmogrify arrays, 82
2dup, 35

A Programming Language, 2
abs, 53
add source line, 80
amean, 53
and, 53
APL, 2
append, 38
apply, 38
array, 22
array language, 1, 2
Array::APX, 89
Array::DeepUtils, 86, 89
atan2, 53
automaton

cellular, 73

batch mode, 16
break, 25, 58

cellular automaton, 73
clear, 34
close, 50
cmean, 54
cmp, 53
collapse, 39

118 Index

complex, 54
compress, 39
control instruction, 25
Conway, John Horton, 73
cos, 54
cosine approximation, 67

data structure
dressed, 28

dclone, 86
defined, 54
del, 62
depth, 34
dice, 66
dice operator, 53
distinct, 54
do, 25, 58
dreduce, 39
dress, 39
dressed data structure, 28
drop, 35
dump, 62
dup, 35
dynamic language, 3
dynamic programming language, 9

e, 54
else, 58
end of file, 50
eof, 50
EOF, 50
eps, 54
eq, 52
eql, 53
Eratosthenes, sieve of, 4
eval, 63
examples

cosine approximation, 67
dice, 66
examples

Fibonacci numbers, 65
throwing dice, 66

execute, 58, 81
exit, 59
exp, 55
expand, 40
explain, 63

extract, 40

Falkoff, Adin, 2
Fibonacci numbers, 65
fin, 50
finite-state machine, 84
float, 80
Forth, 8
fout, 50
function, 25
function language, 1

Game of Life, 73
gcd, 55
ge, 52
glider, 75
gmean, 55
gplot, 59
grade, 40
gt, 52

hello-world, 17
help, 59
hmean, 55
hoelder, 55

I/O instruction, 26
if, 58
im, 55
imperative language, 1
in, 41
index, 41
installation, 13
int, 55
interactive mode, 16
intersect, 55
iota, 3
iota, 41
Iverson, Ken, 2

Jan Łukasiewicz, 7
join, 42

lang5, 79
Lang5, 21
language

array, 2
dynamic, 3

Index 119

functional, 1
imperative, 1
object oriented, 1
scripting, 9
language

von Neumann, 1
last in first out, 21
le, 52
length, 42
library, 33
LIFO, 21
LISP, 21
load, 59
loop, 25, 58
loop unrolling, 72
loop-unrolling, 59
lt, 52

MacLaurin, 67
Mandelbrot set, 71
Mandelbrot, Benoit, 71
max, 56
median, 56
min, 56
Moore, Charles H., 8, 21

ndrop, 35
ne, 52
neg, 56
not, 56
number

perfect, 71

object oriented language, 1
one-liner, 16
open, 50
operator, 24
or, 56
outer, 42
over, 36

panic, 60
perfect number, 71
pick, 36
Pisani, Leonardi, 65
polar, 56
pop, 8, 21

prime, 57
push, 8, 21

qmean, 57
qualifier, 15

re, 57
read, 50
reduce, 43
remove, 43
reshape, 44
reverse, 45
Reverse Polish LISP, 10
reverse Polish notation, 8
roll, 37
rot, 37
rotate, 45
RPL, 21
RPL, 10
RPN, 8

save, 60
scalar, 22
scatter, 45
scripting language, 9
select, 46
Selectric Typewriter, 2
set, 63
shape, 24
shape, 46
sieve of Eratosthenes, 4
sin, 57
slice, 46
slurp, 51
split, 48
spread, 48
sqrt, 57
stack, 8, 21, 86
standard error, 51
standard input, 50
standard output, 49
stderr, 51
STDERR, 51
stdin, 50
STDIN, 51
stdout, 49
STDOUT, 51

120 Index

strip, 48
strob, 80
subscript, 48
subset, 57
swap, 37
system, 61

tan, 58
then, 58
throwing dice, 66
TIOBE, 1
Top Of Stack, 21
TOS, 21
transpose, 49
type, 61

Ulam spiral, 76
Ulam, Stanislaw, 76
Ulam-spiral, 59
union, 58
unlink, 51

variable, 28
ver, 62
vlist, 63
von Neumann language, 1

whead, 80
wlist, 64
word, 24, 26

