
Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

APL
one of the greatest programming languages ever

Bernd Ulmann
ulmann@vaxman.de

Vintage Computer Festival Europe 2007
29th April – 1st May 2007

Munich

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

1 Kenneth E. Iversion

2 The birth of APL

3 Introduction to APL

4 APL machines

5 The future

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

Kenneth E. Iverson, 17.12.1920 – 19.20.2004

The picture on the right is the last picture of Ken Iverson (with
Rachel Hui, photo by Stella Hui) – four weeks before his death.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

Who was Kenneth E. Iversion?

He was a mathematician by profession.

He loved to explore new ways of thinking. As Linda Alvord1

once said: ”Meeting Ken Iversion could cause mental
transformations.”

Kenneth E. Iverson had a special interest in mathematical
notation – a good example is his seminal paper Notation as a
Tool of Thought (cf. [5]).

He found the standard notation awkward and inconsistent and
thus developed a new system in 1957 while being an assistant
professor in Harvard (cf. [8][pp. 1]).

1http://www.vector.org.uk/archive/v223/alvord.htm

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

The birth of APL

In 1960 Ken E. Iverson began working for IBM where he met
Adin Falkoff who became interested in Ken’s new notation.

He extended his notation to a degree which made it possible
to be used for the description of systems and algorithms, see
[6] (eventually this notation was used to describe the
complete IBM /360 architectur in 1964, cf. [7]).

This language was internally known as Iverson’s Better Math
– IBM did not like this name for obvious reasons, thus Iverson
was forced to come up with something else:

A Programming Language
APL for short.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

The birth of APL

This name was used officially for the first time in the title of
the book [3] in 1962, where it was still used, despite the title
of the book, as a method for ”interpersonal communication”
(cf. [8][p. 1]), not as a computer programming language.

Since Iversons goal was the development of a consistent new
system of notation for mathematics, he used normal
mathematical symbols, i.e. rather weird symbols which makes
typing in an APL programm a bit challenging.

To be honest, APL code looks like line noise to the
uninformed. . .

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

The birth of APL

R. A. Brooker once asked (cf. [9][p. 11]):

”Why do you insist on using a notation which is a nightmare
for typist and compositor. . . ?”

The use of very special graphical symbols in APL programs
was a severe problem in the 1960s since there were no graphic
displays capable of displaying these symbols. IBM overcame
this problem with the introduction of the IBM selectric
typewrite which could use special character balls containing
the APL character set.

Despite this particular difficulty the constistency and efficiency
of Ken E. Iverson’s APL quickly led to the development of
interpreters for this language.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

The first APL systems

The first APL systems

1963: Hellermann implements a subset of APL as an
interpreter on the IBM 1620)2 (cf. [8][p. 1]).

1965: M. L. Breed and P. S. Abrams developed an APL
implementation on an IBM 7090 running in a batch
environment (cf. [8][p. 1]).

1966: Breed and Abrams create a new APL system running
under an experimental time sharing system on the
IBM 7090. This was the first time an APL system
was used interactively as it is common today (cf.
[8][p. 1]).

2This system was known as CADET – short for Can’t Add Doesn’t Even
Try, since the machine had no real ALU but relied on lookup tables for its
operations.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

APL basics

APL is in its very nature an interpreter language and supports
interactivity to a uniquely large degree.

APL does not care too much about data types – something
which was adopted in more recent languages like Perl,
Python, etc.

The basic datastructure of APL is the vector.

APL programs make seldom use of loops, conditional
execution and the like as everything is transformed into
vector/matrix operations.

APL programs tend to be incredibly short in comparison with
implementations using other languages. One-liners are not
uncommon.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A very simple example

Calculating
∑100

i=1 i

To give an impression of the power of APL consider the following
problem: Calculate the sum of all integers ranging from 1 to 100.
A simple C-solution might look like this:

sum.c

#include <stdio.h>
int main()
{
int i, sum = 0;
for (i = 1; i <= 100; sum += i++);
printf("Sum: %d\n", sum);
return 0;

}

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A very simple example

Calculating
∑100

i=1 i

Using APL one would transform the original problem to one
requiring the calculation of the inner sum of a vector containing
100 successive integer elements ranging from 1 to 100.
The complete APL solution for calculating

100∑
i=1

i

looks like this:

APL solution

+/ι100

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A very simple example

Explanation

This program consists of two parts:

1 The generation of a vector containing 100 successive integer
elements ranging from 1 to 100. This is done by using the
operator ι which takes an integer argument and returns a
vector of the structure described above, so ι100 yields

(1, 2, 3, 4, 5, 6, 7, . . . , 98, 99, 100)

2 Calculating the inner sum of these vector elements: The heart
of this operation is the so called reduction operator ”/” which
expects two arguments:

1 A vector on its right side and
2 an operand on its left side.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A very simple example

Explanation

The reduction operator places the operator found on its left
hand side between every two successive elements of the vector
written on its right hand side.

In the current example we have

+/ι100 = (1 + 2 + 3 + 4 + · · ·+ 98 + 99 + 100)

which obviously equals
∑100

i=1 i and thus solves the initial
problem.

Did you see that the APL expression was evaluated from right
to left? This seems quite odd, but has a reason. . .

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

Evaluating APL expressions

Right to left evaluation

Ken Iverson always thought of the traditional left-to-right
evaluation with its idiosyncrasies of operator precedence and
parentheses as a kludge.
He preferred a strict right-to-left evaluation with no or only a
few operator precedence rules. This feels odd at first but has
real advantages over the traditional style of writing equations
and algorithms as he shows in [4] on a polynomial evaluation
using the Horner technique:

The conventional solution looks like this:

(a, b, c , d , e)
∏

(x) = a + x × (b + x × (c + x × (d + x × e)))

while a strict right to left evaluation rule yields

(a, b, c , d , e)
∏

(x) = a + x × b + x × c + x × d + x × e.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

Evaluating APL expressions

Right to left evaluation

Every APL expression is thus evaluated from right to left!

So 3× 4 + 5 yields 27 using APL, not 17 as one might think!

This makes the use of parenthesis in many cases superfluous
which adds to the expressional power of APL.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A more complicated example

Generate a list of prime numbers

The following example is far more complicated than the simple
calculation of a sum shown before. The goal is to print a list
of all prime numbers ranging from 2 to a given number R.

Using a conventional language like C a solution based on the
sieve of Eratosthenes could look like this (this example is
indeed a bit obfuscated, but I tried to solve the problem with
as few lines of code as possible without trying too hard):

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A more complicated example

Generate a list of prime numbers

eratosthenes.c
#include <stdio.h>

#define R 100

int main()

{
int i, j, v[R + 1];

for (i = 2; i <= R; v[i++] = 1);

for (i = 2; i * i <= R; i++)

for (j = 2; v[i] && i * j <= R; v[i * j++]= 0);

for (i = 2; i <= R; i++)

if (v[i]) printf("%d ", i);

return 0;

}

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A more complicated example

Generate a list of prime numbers

Solving this problem using APL results in a much shorter and more
elegant program:

APL solution

(∼ R ∈ R ◦ .× R)/R← 1 ↓ ιR

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A more complicated example

Explanation

How does this work?

Create a vector of the form (2, . . . ,R) and save it in R
(again) by R← 1 ↓ ιR.

Create a matrix of the form
4 6 8 10 . . .
6 9 12 15 . . .
8 12 16 20 . . .
10 15 20 25 . . .
...

...
...

...
. . .


by creating the outer product of the vector R like this:
R ◦ .× R. This matrix contains everything but prime numbers!

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

A more complicated example

Explanation

Now create a bit vector with elements corresponding to the
elements of R, containing a 1 for every value being prime
(thus not being an element of the matrix above):
(∼ R ∈ R ◦ .× R).

Finally, use this bit vector to select all prime elements from R
using the selection operator /.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

How does a really complicated APL routine look like?

Performing a fast Fourier transformation (FFT)

How does this work? Do not even ask! (Have a look into
[2][p. 212].)

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

Readability ond maintainability of programs

Being able to write APL programs does not normally imply
that you are able to read APL programs – not even your own!

This has APL earned the notation of being a write only
language.

APL encourages the implementation of short and powerful
routines, on the other hand, which simplifies maintainance of
existing APL programs.

Getting used to the APL way of thought is hard at the
beginning – especially if one is used to program in a procedural
or object oriented style, but due to the expressive power of
APL it is worth to have a deeper look into this language.

One can even take advantage from the APL way of thought
when using other programming languages or even when using
APL as a system of notation.

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

APL machines

As with LISP there were some attempts to build APL
machines, i.e. implement processors with special features to
speed up the execution of APL programs.

One of the earliest attempts was an APL implementation in
microcode (real programmers write microcode – Assembler is
a high level language) for the IBM S/360 model 25 (described
by Hassit).

A real hardware implementation was the (commercially
unsuccessful) Control Data STAR-100 vector processor shown
in the next slide (a real computer – LISP machines are quite
boring compared to that :-) ).

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

APL machines

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

The future of APL

APL is far from being dead!

There even is a recent APL implementation available for free
and for most common platforms (unfortunately not for
OpenVMS) from Morgan Stanley:
http://www.aplusdev.org

Ken Iverson’s last brainchild, called J, is available for a lot of
platforms, too (even OpenVMS – ported by me :-) ) – it is
even more weird than APL since it does not need any special
symbols but (ab)uses everything available in ASCII in very
inventive ways (cf. http://www.jsoftware.com).

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

[1], A Source Book in APL, APL PRESS, Palo Alto, 1981

[2], Wolfgang K. Giloi, ”Programmieren in APL”, deGruyter,
Berlin, 1977

[3], Kenneth E. Iverson, A Programming Language, J. Wiley &
Sons, New York, 1962

[4], Ken E. Iverson, ”Conventions Governing Order of
Evaluation”, in [1][pp. 29–32]

[5], Kenneth E. Iverson, ”Notation as a Tool of Thought”, in
[1][pp. 105–128]

[6], K. E. Iverson, ”Programming notation in systems design”,
in IBM Systems Journal, June 1963, pp. 117–128

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever



Outline Kenneth E. Iversion The birth of APL Introduction to APL APL machines The future

[7], A. D. Falkoff, K. E. Iverson, E. H. Sussenguth, ”A formal
description of SYSTEM/360”, in IBM Systems Journal, Vol 3,
No. 3, 1964, pp. 198–261

[8], Wolfgang H. Janko, APL 1 – Eine Einfuehrung in die
Elemente der Sprache und des Systems, Athenaeum Verlag,
Koenigstein/Ts., 1980

[9], Eugene E. McDonnell, ”Introduction”, in [1][p. 11–14]

Bernd Ulmann ulmann@vaxman.de

APL one of the greatest programming languages ever


	Outline
	Kenneth E. Iversion
	The birth of APL
	Introduction to APL
	APL machines
	The future

