
5 – a stack based array language implemented in
Perl

Bernd Ulmann

YAPC::EU 2010

Hochschule fuer Oekonomie und Management, Frankfurt

1/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Setting the stage 1. Introduction

First of all, 5 is a blend between APL and Forth1.

Having said this a couple of questions may raise:

Why would one implement yet another programming language
– especially an array language?

Of all the programming languages on earth – why take APL
and Forth as the basis for a new language?

The first question is easy to answer: Because it is fun and it is
interesting and I really like dynamic languages and. . .

The second question is not as easily answered but here are some
rather personal reasons2:

1If this sounds strange then remember HP’s programming language RPL for
their late pocket calculator series which was based on LISP and Forth.

2Do you remember the ”Lithp”-talk by Marty Pauley at the YAPC::EU 2006
and my follow on lightning talk about APL? :-)

2/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

APL and Forth at a glance 1. Introduction

About APL:

+ + +: I love APL’s mathematical purity.
+ + +: APL is incredibly powerful!

++: APL is highly interactive.
−: It requires a really arcane character set.
−: It is completely unreadable for the uninitiated

and hard to read even for those knowing APL3.
−−: There is only one truly free APL interpreter

available4.

About Forth:

++ Very simple to implement and use.
++ Highly interactive, too.
−: Its central data structure, the stack, only

supports basic data types (sometimes only
integers).

3APL is sometimes called a write-only language.
4A+ – cf. http://www.aplusdev.org

3/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

APL? Arcane? Unreadable? 1. Introduction

...see what I mean? Believe it or not, but this implements a fast
Fourier transform5.

5Cf. [Giloi 77][p. 212]
4/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Crossing APL with Forth yields. . . 1. Introduction

. . . a stack based array language, called 5:

The stack can hold scalars as well as nested data structures.

It is possible to write so called user defined words which
correspond to functions in traditional languages.

The interpreter automatically applies unary or binary operators
or unary or binary user defined words on all elements of nested
data structures (implied multidimensional map).

5 is really powerful and fun to program in – and it does not
need a strange character set! :-)

5 is completely implemented in Perl and is thus easily portable
(currently 5 is used on Max OS X, OpenVMS and Windows).

5 is available at no cost at all and everybody is welcome to
contribute to 5’s development!

The 5-repository can be found at
http://lang5.sourceforge.net.

5/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Enough – show me some code! 2. Examples

Let’s start with a simple example – calculate
100∑
i=1

i and 100! in 5:

gauss factorial.5

1 # Define some simple words
2 : gauss iota 1 + ’+ reduce ;
3 : factorial iota 1 + ’* reduce ;
4

5 # Use these new user defined words:
6 100 dup gauss . factorial .

gauss factorial.5

alberich$ 5 gauss_factorial.5
----> loading mathlib.5
----> loading stdlib.5
loading gauss_factorial.5
5050
9.33262154439441e+157

6/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Sum and factorial 2. Examples

How does this work? Let us have a look at this simplified version
of the sum:

simple sum.5

1 100 iota 1 + ’+ reduce .
simple sum.5

100 iota generates a vector [0 1 2 ... 99].

Adding 1 to this vector yields [1 2 3 ... 100].

’+ pushes the operator ”+” onto the stack.

The reduce-function expects an operator on the top of the
stack (TOS for short) and a vector below. It then applies this
operator between all successive vector elements yielding 1 +
2 + 3 + ... + 100 in this case.

The .-function prints the TOS.

That’s all – no explicit loops, nothing. . .

7/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Throwing dice 2. Examples

Suppose you have to simulate throwing a six sided dice 100 times
and calculate the arithmetic mean of the results you get:

throw dice.5

1 : throw_dice
2 6 over reshape
3 ? int 1 +
4 ’+ reduce swap /
5 ;
6

7 100 throw_dice .
throw dice.5

alberich$ 5 throw_dice.5
----> loading mathlib.5
----> loading stdlib.5
loading throw_dice.5
3.35

8/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Throwing dice 2. Examples

How does this work?

100 throw dice pushes 100 onto the stack and calls the
word throw dice.
6 over yields 100 6 100 on the stack.

The reshape-function expects a dimension vector (or a scalar
in the one-dimensional case) on the TOS and rearranges the
object found below accordingly. In this case the result is a
vector of the form [6 6 6 ... 6].
The unary ?-operator generates a pseudo random number
between 0 and the number found on the TOS. Since it is
unary it is automatically applied to all elements of the vector
we just created.
int 1 + gets rid of the fractional part of the resulting

vector elements and makes sure they are between 1 and 6.
’+ reduce then computes the sum of the vector elements.

swap / swaps this sum and the 100 from the beginning and
divides, yielding the arithmetic mean.

9/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Calculating Fibonacci numbers 2. Examples

No example collection would be complete without Fibonacci
numbers. . .

fibr apply.5

1 : fib{u}
2 dup 2 < if drop 1 break then
3 dup 1 - fib swap 2 - fib +
4 ;
5

6 10 iota fib .
fibr apply.5

alberich$ 5 fibr_apply.5
----> loading mathlib.5
----> loading stdlib.5
loading fibr_apply.5
[1 1 2 3 5 8 13 21

34 55]

10/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Calculating Fibonacci numbers 2. Examples

How does this work?

The {u} following the name fib of the user defined word

denotes that this will be an unary user defined word, so
everything that holds true for built-in unary operators will also
work for this word. Please note that this includes the
automatic application of this word to all scalar elements of
nested data structures.

10 iota fib . creates a vector [0 1 2 ... 9] and
applies the word fib to every single element.

fib is a simple recursive implementation of the Fibonacci
rule.

11/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Sum of cubes 2. Examples

Recently I found the following Fortran-example program6 which
prints all numbers between 1 and 999 which are equal to the sum
of the cubes of their digits:

sum of cubes.for

1 program sum_of_cubes
2 implicit none
3 integer :: H, T, U
4 do H = 1, 9
5 do T = 0, 9
6 do U = 0, 9
7 if (100*H + 10*T + U == H**3 + T**3 + U**3) &
8 print "(3I1)", H, T, U
9 end do

10 end do
11 end do
12 end program sum_of_cubes

sum of cubes.for

Horrible, isn’t it? Let’s do it in 5:
6Cf. [Adams et al. 09][p. 41]

12/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Sum of cubes 2. Examples

The 5-solution is a bit shorter (”Look Mom, no Loops!”):

sum of cubes.5

1 : cube_sum{u} "" split 3 ** ’+ reduce ;
2 999 iota 1 + dup dup cube_sum == select .

sum of cubes.5

alberich$ 5 sum_of_cubes.5
----> loading mathlib.5
----> loading stdlib.5
loading sum_of_cubes.5
[1 153 370 371 407]

13/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Sum of cubes 2. Examples

How does this work?

cube sum{u} defines an unary word.

This word pushes an empty string onto the stack and splits
the element found below yielding a vector of the individual
digits of the number which was found on the stack before.

It then calculates the cubes of the vector elements by 3 ** .

This vector of cubed digits is then summed using
’+ reduce . The word thus transforms a number found on

the TOS into the sum of its digit cubes.

999 iota 1 + yields [1 2 3 ... 999].

Since we need three of these vectors, it is duplicated twice.

Then cube sum is applied element wise to this vector.

== compares the result of this operation with the first copy
of the original vector yielding something like [1 0 0 ...].

select selects elements from a vector controlled by a
corresponding boolean vector.

14/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

List of primes 2. Examples

Generate a list of primes (between 2 and 100 eg.):

primes.5

1 : prime_list
2 1 - iota 2 + dup dup dup
3 ’* outer
4 swap in not
5 select
6 ;
7

8 100 prime_list .
primes.5

alberich$ 5 prime.5

----> loading mathlib.5

----> loading stdlib.5

loading prime.5

[2 3 5 7 11 13 17 19 23 29 31 37

41 43 47 53 59 61 67 71 73 79 83 89

97]

15/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Plot on an ASCII-Terminal 2. Examples

sine curve.5
1 : print_dot{u} " " 1 compress swap reshape "*\n" append "" join . ;

2 21 iota 10 / 3.14159265 * sin 20 * 25 + int
sine curve.5

alberich$ 5 sine_curve.5

----> loading mathlib.5

----> loading stdlib.5

loading sine_curve.5

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

16/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Matrix-Vector-Multiplication 2. Examples

Multiply

1 2 3
4 5 6
7 8 9

 by

10
11
12

:

matrix vector.5

1 : inner+{u} ’+ reduce ;
2 : mv* 1 compress ’* apply ’inner+ apply ;
3

4 9 iota 1 + [3 3] reshape
5 3 iota 10 +
6

7 mv* .
matrix vector.5

alberich$ 5 matrix.5
----> loading mathlib.5
----> loading stdlib.5
loading matrix.5
[68 167 266]

17/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Larry Wall’s Perl 6 Examples 2. Examples

Generate an alternating sequence [0 1 0 1 ...]:
sequence.5

1 20 iota 2 % .
sequence.5

The first 20 powers of 2:
powers.5

1 2 20 reshape 20 iota ** .
powers.5

Perfect numbers between 1 and 500:
perfect.5

1 : p{u}
2 dup dup 1 - iota 1 + dup rot swap
3 % not select ’+ reduce ==
4 ;
5 500 iota 1 + dup p select .

perfect.5

18/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Conclusion 3. Conclusion

5 was developed during the last year and went through two
incarnations. Concluding this short talk I would like to mention the
following points:

5 is quite as powerful as APL although there are still some
operators and functions missing which will be implemented
soon.
5 is a joy to work with – especially since loops and other
control structures are rarely necessary due to the APL-like
approach to programming.
The routines for handling deeply nested structures like shape,
reshape, copy and many, many more will be moved into a
stand alone Perl module which will be made available at
CPAN in the near future.
We are still looking for persons interested in the development
of 5 to participate in the development effort, so feel cordially
invited to join the current development team (mainly Thomas
Kratz and the author).

19/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Thank you! 3. Conclusion

The author would like to express his thanks to the following
persons:

Mr. Thomas Kratz who did most of the current 5-interpreter
implementation,

Frederic Fournis and Dr. Reinhard Steffens for many fruitful
discussions about 5,

My wife, Rikka, for her support and her feedback

and last but not least you, the audience, for your interest and
patience.

The author can be reached at ulmann@vaxman.de.

20/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

Bibliography 3. Conclusion

[Adams et al. 09] Jeanne C. Adams, Walter S. Brainerd,
Richard A. Hendrickson, Richard E. Maine, Jeanne T. Martin,
Brian T. Smith, The Fortran 2003 Handbook, Springer, 2009

[Giloi 77] Wolfgang K. Giloi, Programmieren in APL,
deGruyter, Berlin, 1977

21/21 5 – a stack based array language implemented in Perl – Bernd Ulmann YAPC::EU 2010

	Introduction
	Examples
	Conclusion

