5 — a stack based array language implemented in

Perl

Bernd Ulmann

YAPC::EU 2010

Hochschule fuer Oekonomie und Management, Frankfurt

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Setting the stage 1. Introduction

First of all, 5 is a blend between APL and Forth!.

Having said this a couple of questions may raise:
m Why would one implement yet another programming language
— especially an array language?
m Of all the programming languages on earth — why take APL
and Forth as the basis for a new language?

The first question is easy to answer: Because it is fun and it is
interesting and | really like dynamic languages and. ..

The second question is not as easily answered but here are some
rather personal reasons?:

LIf this sounds strange then remember HP's programming language RPL for
their late pocket calculator series which was based on LISP and Forth.

2Do you remember the " Lithp”-talk by Marty Pauley at the YAPC::EU 2006
and my follow on lightning talk about APL? :-)

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

APL and Forth at a glance

1. Introduction

m About APL:

++ +:
++ +:

++:

m About Forth:

++
++

| love APL’'s mathematical purity.
APL is incredibly powerful!
APL is highly interactive.

. It requires a really arcane character set.
. It is completely unreadable for the uninitiated

and hard to read even for those knowing APL3.

: There is only one truly free APL interpreter

available?.

Very simple to implement and use.
Highly interactive, too.

. Its central data structure, the stack, only

supports basic data types (sometimes only
integers).

3APL is sometimes called a write-only language.
*A+ — cf. http://www.aplusdev.org

5 — a stack based array language implemented in Perl — Bernd Ulmann

YAPC::EU 2010

APL? Arcane? Unreadable? 1. Introduction

v Z<FFT X;C;D;E;J;K;LL;M;N;0

[1] LL<|2%-0-1M< | 2®N,0pE< 1-2x~0<«11.J«1L
+0,0pK<« 1N« _l'rpx

(21 AM>L<L+1)/1+ppJ<J,Np 0 1 o=(
2xL)p1

[3] Z<X[;(L<0)HPLL)+.xJ«(M,N)oJ]

[4] X« 21 c.00(-0-K): 14LL

(5] Z<Z[;K-,LL[L]xJ[L;]11HpZ)p(-+X[;D] x
Z[;C)),++X[;D<0+Np LL[E+M-L]x-0-1
2xLL[L] JxeZ[;C«K+,LL[L] x0=J[L;]]

[6] —+((M+0O)>L<«L+1)/5

\v}

...see what | mean? Believe it or not, but this implements a fast
Fourier transform?.

®Cf. [Giloi 77][p. 212]

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Crossing APL with Forth yields. .. 1. Introduction

.. a stack based array language, called 5:
m The stack can hold scalars as well as nested data structures.

m It is possible to write so called user defined words which
correspond to functions in traditional languages.

m The interpreter automatically applies unary or binary operators
or unary or binary user defined words on all elements of nested
data structures (implied multidimensional map).

m 5 is really powerful and fun to program in — and it does not
need a strange character set! :-)

m 5 is completely implemented in Perl and is thus easily portable
(currently 5 is used on Max OS X, OpenVMS and Windows).

m 5 is available at no cost at all and everybody is welcome to
contribute to 5's development!

m The 5-repository can be found at
http://langb.sourceforge.net.

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Enough — show me some code! 2. Examples

100

Let's start with a simple example — calculate > i and 100! in 5:

i=1

gauss_factorial.b

Define some simple words
gauss iota 1 + ’+ reduce ;
factorial iota 1 + ’* reduce ;

Use these new user defined words:
100 dup gauss . factorial

gauss_factorial.b

alberich$ 5 gauss_factorial.b
--—-> loading mathlib.b

--——> loading stdlib.5
loading gauss_factorial.b
5050

9.33262154439441e+157

5 — a stack based array language implemented in Perl — Bernd Ulmann

YAPC::EU 2010

Sum and factorial 2. Examples

How does this work? Let us have a look at this simplified version
of the sum:

simple_sum.5

1 100 iota 1 + ’+ reduce

simple_sum.5

] generates a vector [0 1 2 ... 99].

m Adding 1 to this vector yields [1 2 3 ... 100].
m pushes the operator " +" onto the stack.

m The reduce-function expects an operator on the top of the
stack (TOS for short) and a vector below. It then applies this
operator between all successive vector elements yielding 1 +
2 + 3+ ... + 100 in this case.

The .-function prints the TOS.

That's all — no explicit loops, nothing. ..

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Throwing dice 2. Examples

Suppose you have to simulate throwing a six sided dice 100 times
and calculate the arithmetic mean of the results you get:

throw_dice.5

1 : throw_dice
2 6 over reshape
3 ? int 1 +
4 ’+ reduce swap /
5)
6
7 | 100 throw_dice
throw_dice.5

alberich$ 5 throw_dice.5
--——> loading mathlib.5
--—-> loading stdlib.5
loading throw_dice.5
3.35

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Throwing dice 2. Examples

How does this work?

m [100 throw dice| pushes 100 onto the stack and calls the
word throw_dice.

[yields 100 6 100 on the stack.

m The reshape-function expects a dimension vector (or a scalar
in the one-dimensional case) on the TOS and rearranges the
object found below accordingly. In this case the result is a
vector of the form [6 6 6 ... 6].

m The unary 7-operator generates a pseudo random number
between 0 and the number found on the TOS. Since it is
unary it is automatically applied to all elements of the vector
we just created.

L] gets rid of the fractional part of the resulting

vector elements and makes sure they are between 1 and 6.
[then computes the sum of the vector elements.
[swaps this sum and the 100 from the beginning and
divides, yielding the arithmetic mean.

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Calculating Fibonacci numbers 2. Examples

No example collection would be complete without Fibonacci

numbers. ..
fibr_apply.5
1| fib{u}
2 dup 2 < if drop 1 break then
3 dup 1 - fib swap 2 - fib +
4 5
5
6 |10 iota fib .
fibr_apply.5

alberich$ 5 fibr_apply.5

--—-> loading mathlib.b

--——> loading stdlib.5

loading fibr_apply.5

[1 1 2 3 5 8 13 21
34 55 1]

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Calculating Fibonacci numbers 2. Examples

How does this work?

m The following the name fib of the user defined word
denotes that this will be an unary user defined word, so
everything that holds true for built-in unary operators will also
work for this word. Please note that this includes the
automatic application of this word to all scalar elements of
nested data structures.

m |10 iota fib .|creates a vector [0 1 2 ... 9] and
applies the word £ib to every single element.

[is a simple recursive implementation of the Fibonacci
rule.

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Sum of cubes 2. Examples

Recently | found the following Fortran-example program® which
prints all numbers between 1 and 999 which are equal to the sum
of the cubes of their digits:

sum_of _cubes.for

1 |program sum_of_cubes
implicit none

V]

3 integer :: H, T, U

4 do H=1, 9

5 do T =0, 9

6 do U=20, 9

7 if (100*H + 10*T + U == H*x3 + Tx*3 + U*x*3) &
8 print "(3I1)", H, T, U

9 end do

10 end do

11 end do

12 | end program sum_of_cubes
sum_of_cubes.for

Horrible, isn't it? Let's do it in 5:
8Cf. [Adams et al. 09][p. 41]

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Sum of cubes 2. Examples

The 5-solution is a bit shorter (" Look Mom, no Loops!"):

sum_of _cubes.5
1 |: cube_sum{u} "" split 3 ** ’+ reduce ;

2 999 iota 1 + dup dup cube_sum == select
sum_of_cubes.5

alberich$ 5 sum_of_cubes.5

--——> loading mathlib.5

--—-> loading stdlib.5

loading sum_of_cubes.5

[1 153 370 371 407 1]

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Sum of cubes 2. Examples

How does this work?

[defines an unary word.

m This word pushes an empty string onto the stack and splits
the element found below yielding a vector of the individual
digits of the number which was found on the stack before.

m It then calculates the cubes of the vector elements by .

m This vector of cubed digits is then summed using

. The word thus transforms a number found on

the TOS into the sum of its digit cubes.
(999 iota 1 +|yields [1 2 3 ... 999].
Since we need three of these vectors, it is duplicated twice.

Then is applied element wise to this vector.

[==] compares the result of this operation with the first copy
of the original vector yielding something like [1 0 0 ...].

| selects elements from a vector controlled by a

corresponding boolean vector.

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

List of primes 2. Examples

Generate a list of primes (between 2 and 100 eg.):

primes.5
1 |: prime_list
2 1 - iota 2 + dup dup dup
3 ’* outer
4 swap in not
5 select
6 3
7
s |100 prime_list
primes.5
alberich$ 5 prime.5
----> loading mathlib.5
----> loading stdlib.5
loading prime.5
[2 3 5 7 11 13 17 19 23 29 31 37
41 43 a7 53 59 61 67 71 73 79 83 89

97]

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Plot on an ASCII-Terminal 2. Examples

sine_curve.b

print_dot{u} " " 1 compress swap reshape "*\n" append "" join
21 iota 10 / 3.14159265 * sin 20 * 25 + int
sine_curve.5

alberich$ 5 sine_curve.5
----> loading mathlib.5
----> loading stdlib.5
loading sine_curve.5

5 — a stack based array language implemented i rl — Bernd Ulm

APC::EU 2010

Matrix-Vector-Multiplication 2. Examples

1 2 3 10
Multiply |4 5 6| by | 11
7 8 9 12
matrix_vector.5
1 |: inner+{u} ’+ reduce ;
2 |: mvx 1 compress ’* apply ’inner+ apply ;

4 |9 iota 1 + [3 3] reshape
5 |3 iota 10 +

7 mv*

matrix_vector.5

alberich$ 5 matrix.5
--——> loading mathlib.5
--—-> loading stdlib.5
loading matrix.5

[68 167 266]

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Larry Wall’s Perl 6 Examples 2. Examples

Generate an alternating sequence [0 1 0 1 ...]:

sequence.b
1 |20 iota 2 % .

sequence.b

The first 20 powers of 2:

powers.5

1 |2 20 reshape 20 iota **

powers.5

Perfect numbers between 1 and 500:
pérfect.b

1| p{ur
2 dup dup 1 - iota 1 + dup rot swap
3 % not select ’+ reduce ==

5 |500 iota 1 + dup p select
perfect.b

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Conclusion 3. Conclusion

5 was developed during the last year and went through two
incarnations. Concluding this short talk | would like to mention the
following points:

m 5 is quite as powerful as APL although there are still some
operators and functions missing which will be implemented
soon.

m 5 is a joy to work with — especially since loops and other
control structures are rarely necessary due to the APL-like
approach to programming.

m The routines for handling deeply nested structures like shape,
reshape, copy and many, many more will be moved into a
stand alone Perl module which will be made available at
CPAN in the near future.

m We are still looking for persons interested in the development
of 5 to participate in the development effort, so feel cordially
invited to join the current development team (mainly Thomas
Kratz and the author).

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Thank you! 3. Conclusion

The author would like to express his thanks to the following
persons:

m Mr. Thomas Kratz who did most of the current 5-interpreter
implementation,

m Frederic Fournis and Dr. Reinhard Steffens for many fruitful
discussions about 5,

m My wife, Rikka, for her support and her feedback

m and last but not least you, the audience, for your interest and
patience.

The author can be reached at ulmann@vaxman.de.

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

Bibliography 3. Conclusion

[4 [Adams et al. 09] Jeanne C. Adams, Walter S. Brainerd,
Richard A. Hendrickson, Richard E. Maine, Jeanne T. Martin,
Brian T. Smith, The Fortran 2003 Handbook, Springer, 2009

[d [Giloi 77] Wolfgang K. Giloi, Programmieren in APL,
deGruyter, Berlin, 1977

5 — a stack based array language implemented in Perl — Bernd Ulmann YAPC::EU 2010

	Introduction
	Examples
	Conclusion

