
Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Perl on z/OS
and

the Art of Parsing and Generating SWIFT
Messages

Bernd Ulmann
ulmann@vaxman.de

YAPC::Europe 2006
30th August – 1st September 2006

Birmingham

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

SWIFT
SWIFT basics
SWIFT for depositary banks
SWIFT for depositary banks
Format of SWIFT messages

Perl on z/OS
Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Perl and SWIFT
Conncting to the SWIFT net – a generic solution
Generating SWIFT messages
Parsing SWIFT messages

Conclusion

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

SWIFT basics
SWIFT for depositary banks
SWIFT for depositary banks
Format of SWIFT messages

What is SWIFT?

I Founded in 1973 by 239 financial institutions.

I Short for Society for Worldwide Interbank Financial
Telecommunication.

I The heart of SWIFT is a special purpose network to transmit
data for interbank communication (guaranteed delivery).

I Transmits several millions of messages per day.

I Messages have to comply with strict format rules.

I Literally hundreds of different message types (MT for short).

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

SWIFT basics
SWIFT for depositary banks
SWIFT for depositary banks
Format of SWIFT messages

SWIFT for depositary banks

I In 2005 my employer – a financial institution – decided that
being able to send, receive, generate and parse SWIFT
message automatically would be crucial for the future
depositary bank business.

I This got me involved with the overall SWIFT theme since I
became project manager for this endeavor.

I Since our connection to the SWIFT network and many other
things are done on a large z-series mainframe running z/OS,
the idea of using Perl in this rather strange environment came
up.

I The following picture shows the flow of information in the
depositary bank business:

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

SWIFT basics
SWIFT for depositary banks
SWIFT for depositary banks
Format of SWIFT messages

SWIFT for depositary banks

Capital
Investment
Bank

Broker

Depositary
Bank

1. I
niti

al o
rde

r

2. C
onf

irm
atio

n (M
T5

15)

3. Receive/Deliver (MT541/3)

4. Confirmation (MT545/7)

5. Statement (MT535)

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

SWIFT basics
SWIFT for depositary banks
SWIFT for depositary banks
Format of SWIFT messages

How does a typical SWIFT message look like?

I Horrible!

I It looks a bit like XML, but only a bit. . .

I The next slide shows a real SWIFT message used to create a
trade (made anonymous):

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

SWIFT basics
SWIFT for depositary banks
SWIFT for depositary banks
Format of SWIFT messages

Format of SWIFT messages

{1:F01NO314BICB5507798107552}

{2:O5411443060705SENDERBICXXX57299347020607051443N}

{3:

{108:2752159.541.01}}

{4:

:16R:GENL

:20C::SEME//3141592653

:23G:NEWM

:16S:GENL

:16R:TRADDET

:98A::TRAD//20060704

:98A::SETT//20060706

:90B::DEAL//ACTU/EUR27,180000

:35B:ISIN XU9786546231

PI Research Inc.

:16S:TRADDET

:16R:FIAC

:36B::SETT//UNIT/96, :16R:SETPRTY

:97A::SAFE//1729B :95P::SELL//LBNKDEFF

:16S:FIAC :16S:SETPRTY

:16R:SETDET :16R:AMT

:22F::SETR//TRAD :19A::SETT//EUR75876,16

:22F::DBNM//INTE :16S:AMT

:16R:SETPRTY :16S:SETDET

:95Q::DEAG//Large Bank Inc. -}

CBF 1234 {5:

D-Frankfurt am Main {MAC:E9632025}

:16S:SETPRTY {CHK:9ABBEB5739EE}}Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

SWIFT basics
SWIFT for depositary banks
SWIFT for depositary banks
Format of SWIFT messages

Properties of a SWIFT message

I Block structured with brackets: {...}...{...}.
I Block 4 contains the actual data.

I This data block is itself block structured:

:16R:name
...
...
:16S:name

I Sequence of blocks and items in blocks is important!

I SWIFT has an interesting way to denote negative values.

I Parsing such a message is not too simple.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Background information

Since parsing a SWIFT using COBOL or Assembler (this is not a
joke!) is no fun at all, it was decided to use Perl on the mainframe
to get the project finished in time.

I Perl cannot run on the native z/OS environment.

I Perl for z/OS runs in the UNIX-System-Services environment
(USS for short).

I Now there is a prebuilt Perl 5.8.7 available from IBM – this
was not the case when we started, so we built everything
ourselves.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Prerequesites

I Even a decent z-series system is quite slow compared to
current UNIX systems when it comes to building Perl – expect
compile times of several hours!

I The build process will require higher memory and CPU-time
limits than normally available in a mainframe shop:

SETOMVS MAXASSIZE=671088640
SETOMVS MAXCPUTIME=10000000

I You will have to install gzip and make-1.76 locally. The
IBM supplied make utility breaks the Perl build process!

I Due to the EBCDIC nature of the z-series you cannot use
tar, instead you have to use pax like this:

pax -o to=IBM-1047,from=ISO8859-1 -r < file name

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Building Perl

Building Perl is quite straight forward as long as you take the
following two items into account:

I Do not even think about compiling with -O – the resulting
code will just not run!

I Keep the #define-statement which is mentioned by the
WHOA-message thrown by running ./Configure.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Building DBI

Building DBI is straight forward – just follow the documentation:

I perl Makefile.PL

I make -f Makfefile

I make -f Makefile perl – this step takes a very long time
to complete!

I make -f Makefile.aperl MAP TARGET=perl

I make -f Makefile install

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Building DBD

Building DBD is more of a challenge:

I You will need the required DB2 header files which normally
reside in a partitioned dataset on the z/OS side of the system
(e.g. DB2S710.SDSNC.H).

I You can copy these files with oget or just using ftp for those
who are not too familiar with the arkane z/OS side.

I Place these files in a subdirectory in the USS environment and
extend your PATH variable to contain this directory as an
entry. Furthermore you will need an environment variable
DB2 HOME pointing to this directory, too.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Building DBD

The actual build process is quite difficult:

I cd Constants

I perl Makefile.PL

I make -f Makefile perl

I make -f Makefile.aperl inst perl MAP TARGET=perl

I make -f Makefile install

I cd ..

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Building DBD

I perl Makefile.PL – after this completes, you will have to
change the entry CC in line 32 of Makefile from c89 to c89
-W c,dll. Then run

I make -f Makefile perl – this step will result in a return
code 8 from the LINKEDIT step, which is perfectly normal and
nothing to worry about. This will be resolved in the following
step:

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Building DBD

I Using a suitable editor perform the following changes in
Makefile.aperl:

I Change MAP LINKCMD=$CC to MAP LINKCMD=c89
-Wl,p,dll,AMODE=31.

I Extend the line reading MAP PRELIBS=-lm -lc" to
MAP PRELIBS=-lm -lc
"//’DB2SYS.SDSNMACS(DSNAOCLI)’".

Then you will have to inform c89 about the fact that
DB2SYS.SDSNMACS has no extension .EXP as it would
normally be expected by issuing export
C89 XSUFFIX HOST="SDSNMACS".

I The rest is business as usual: make -f Makefile perl,
make -f Makefile.aperl inst perl MAP TARGET=perl
and, finally, make -f Makefile install.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Accessing DB2

Accessing a DB2 system running on z/OS from a Perl program
running on USS is straight forward.
Assuming that the program runs in the context of a user called
BATUSR and uses a database user DB2USR to connect, the following
rights must be granted:

I BATUSR needs execute right for the plan DSNACLI.

I DB2USR needs the necessary rights for the database objects he
wants to access.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Inserting large character fields

Inserting character fields exceeding 255 bytes in length is a bit of a
problem – it just does not work out of the box.
The workaround we resorted to use is to split large strings in 253
byte chunks and concatenate these explicitly using ||:

I Instead of issuing

INSERT INTO table (’column’)
VALUES (’A VERY, VERY, VERY LONG MESSAGE’)

I we do

INSERT INTO table (’column’)
VALUES (’A VERY, ’||’VERY, VERY ’||’LONG MESSAGE’)

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Inserting large character fields

To facilitate the splitting into chunks we use a function like this:

sub make chunks
{

my ($str, $chunk size) = @ ;
push my @parts, substr($str, 0, $chunk size, ’’)

while $str;
return @parts;

}

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

Running Perl from JCL

I JCL, the Job Control Language is the heart of every job
running on a z/OS system.

I Even if a Perl program is running on USS it is quite likely that
it will be controlled from within a JCL environment.

I Running such a program involves more than just starting a
task:

I Execute the Perl program in the USS environment with output
redirection using BPXBATCH.

I Define characteristics of datasets to hold stdout and stderr,
so that these will be available on the z/OS side.

I Copy the redirected output to the datasets defined before.
I Interpret the return code and take appropriate actions.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

A JCL example – part 1

//PERLTEST JOB ’TEST’,’USER’,MSGCLASS=M,MSGLEVEL=(1,1),

// USER=&SYSUID,NOTIFY=&SYSUID,CLASS=T

//***

//*

// SET SYS=’development’

// SET DIR=’test’

// SET PRG=’db2 test.pl’

//*

//***

//*

//RUNPERL EXEC PGM=BPXBATCH,

// PARM=’sh perl /usr/local/&SYS/&DIR/&PRG..pl &SYS..ini’

//*

//* Set environment variables

//STDOUT DD PATH=’/tmp/&PRG..out’,

// PATHOPTS=(OCREAT,OTRUNC,OWRONLY),PATHMODE=SIRWXU

//STDERR DD PATH=’/tmp/&PRG..err’,

// PATHOPTS=(OCREAT,OTRUNC,OWRONLY),PATHMODE=SIRWXU

//*

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Building Perl, DBI and DBD
Accessing DB2
Running Perl from JCL

A JCL example – part 2

//* Since BPXBATCH can only redirect stdout and stderr into

//* HFS-files these will now be copied back to the MVS environment

//CPOUT EXEC PGM=IKJEFT01,DYNAMNBR=300,COND=EVEN

//SYSTSPRT DD SYSOUT=*

//HFSOUT DD PATH=’/tmp/&PRG..out’

//HFSERR DD PATH=’/tmp/&PRG..err’

//STDOUTL DD SYSOUT=*,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)

//STDERRL DD SYSOUT=*,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)

//STDOUTLF DD DSN=&&STDOUTLF,

// DISP=(NEW,PASS),

// SPACE=(CYL,(20,10),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

//STDERRLF DD DSN=&&STDERRLF,

// DISP=(NEW,PASS),

// SPACE=(CYL,(20,10),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

//SYSPRINT DD SYSOUT=*

//SYSTSIN DD *

OCOPY INDD(HFSOUT) OUTDD(STDOUTL)

OCOPY INDD(HFSOUT) OUTDD(STDOUTLF)

OCOPY INDD(HFSERR) OUTDD(STDERRL)

OCOPY INDD(HFSERR) OUTDD(STDERRLF)

//*

//* If something went wrong, perform some recovery actions.

// IF RC NE 0 THEN

...

// ENDIF

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Conncting to the SWIFT net – a generic solution
Generating SWIFT messages
Parsing SWIFT messages

Sending messages to the SWIFT network

I We use a rather old software called ”Merva” as the interface
to the SWIFT network. Merva runs in the CICS environment
of the mainframe and has no simple interfaces for connecting
inhouse developed applications easily.

I Since there was an Assembler code snippet which could send
a SWIFT message to the Merva system already in production,
we decided to make use of this, too.

I We wrote a DB2 UDF using C which calls this Assembler
program with a SWIFT message as an argument.

I This UDF will be called by an insert trigger defined on a DB2
table in the DB2 system. Inserting a row into this particular
table will fire the trigger, start the UDF and transmit the
SWIFT message to Merva and thus to the SWIFT network.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Conncting to the SWIFT net – a generic solution
Generating SWIFT messages
Parsing SWIFT messages

Receiving messages from the SWIFT network

The other way around works quite the same:

I Reusing another small Assembler program we created
something like a trigger in Merva which is fired every time a
SWIFT message of a particular message type is received.

I This trigger will then connect to the DB2 system and insert a
row into a table for every message received this way.

I The following picture shows the overall architecture of this
inhouse developed interface to the SWIFT network.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Conncting to the SWIFT net – a generic solution
Generating SWIFT messages
Parsing SWIFT messages

Using DB2 trigger and UDFs as an interface to SWIFT

Merva

OUTGOING

INCOMING

Trigger/UDF

SWIFT
network

z/OS
DB2

USS

Perl
programs

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Conncting to the SWIFT net – a generic solution
Generating SWIFT messages
Parsing SWIFT messages

Generating SWIFT messages

Since SWIFT messages have a very rigid structure where the
position of every single field is fixed, we decided to create such
messages by using simple print statements and the like:

$subsequence d3 = "
:16R:AMT
:19A::DEAL//$data->TRADCIRR$nominal
:16S:AMT
:16R:AMT
:19A::EXEC//$data->TRADCURR$data->DMG1BT 4
:16S:AMT" if $amounts;

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Conncting to the SWIFT net – a generic solution
Generating SWIFT messages
Parsing SWIFT messages

Just how hard can it be?

According to John Davies1 and others, parsing SWIFT messages is
a difficult task:

I’m not a betting man but I would put serious money on
the fact that even the brightest of programmers could not
write a reliable SWIFT parser for any given message type
in under a week. Take an ”average” programmer though
and you’re looking at several weeks to get it right.

. . . obviously he is a Java programmer!

1
http://www.c24.biz/download/c24 white paper-parsing a swift message.pdf

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Conncting to the SWIFT net – a generic solution
Generating SWIFT messages
Parsing SWIFT messages

. . . it depends. . .

I Writing a generic parser for SWIFT messages would not be a
simple task, but. . .

I We have only two message types which have to be parsed –
the rigid message structure makes parsing easy when you
know what you are looking for.

I Using Perl it took two persons (one programmer and one
trainee) a mere day to write a simple parser suitable for use in
a production environment!

I Remember the time estimated time frame above?

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Conncting to the SWIFT net – a generic solution
Generating SWIFT messages
Parsing SWIFT messages

Extracting data

I We decided to extract only the necessary fields into a flat
hash structure.

I Due to the repetitive nature of substructures in SWIFT
messages it is important to use frugal matching!

I The following example is used to extract the trade quantity
and the quantity type from a MT541 message ($msg contains
the raw message data, %data is the hash mentioned above):

($data{QUANTITY TYPE}, $data{QUANTITY}) =
$msg =∼ m!:16R:FIAC\n.*?36B::SETT//([A-Z]{4})/([^\n]+)!s;

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

Outline
SWIFT

Perl on z/OS
Perl and SWIFT

Conclusion

Conclusion

I Running Perl on a z/OS machine is not too easy in the
beginning (this might have changed in the meantime), but is
worth the effort.

I Productivity boosts:
I We even began to replace some programs written in COBOL

and the like with short and maintainable Perl programs.
I The availability of Perl makes the mainframe more interesting

for young programmers, too, who are not too familiar with
z/OS and do not really like to think in punch card formats.

I Some problems are still unresolved:
I We could not get Net::SMTP to run due to problems with

EBCDIC support.
I An attempt to install XML-support failed, too.
I The most severe problem for us is that the VSAM-access

method of the OS::Stdio packet does not work.

Bernd Ulmann ulmann@vaxman.de Perl on z/OS and the Art of Parsing and Generating SWIFT Messages

	Outline
	SWIFT
	SWIFT basics
	SWIFT for depositary banks
	SWIFT for depositary banks
	Format of SWIFT messages

	Perl on z/OS
	Building Perl, DBI and DBD
	Accessing DB2
	Running Perl from JCL

	Perl and SWIFT
	Conncting to the SWIFT net -- a generic solution
	Generating SWIFT messages
	Parsing SWIFT messages

	Conclusion

