QNICE
a nice 16 bit architecture

Bernd Ulmann
ulmann@vaxman.de

DEC-2006

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Introduction

Why a new 16 bit processor architecture? Why not stay with
commodity products and a wider bus width?

» First of all, there is nothing like developing your own CPU
from scratch — nothing!

» The QNICE architecture was developed during 2006 with its
32 bit predecessor NICE (cf. [2] and [3]) in mind.

» The 16 bit data bus width was chosen to ease an actual
implementation of the processor either using TTL chips as in
many other homebrew CPU projects! or using more modern
FPGAs with a bit of surrounding circuitry.

'Most notably Bill Buzbee's Magic, cf [1].
Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Introduction

Goal
Basics

> 16 bit data and address bus width (little endian!)

» Rather fixed instruction format — every instruction occupies
one 16 bit machine word

» 16 general purpose registers divided into two banks of eight
registers each

» The register bank containing registers 0...7 is actually a
window to a high speed RAM so in fact there are
256 - 8 + 8 = 2056 registers all in all

» moving the register window is accomplished in a single
operation making push/pop operations virtually unnecessary

» Very small instruction set (17 instructions)

» 4 addressing modes

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Architecture
Registers
The status register R14
Input/Output

Registers

> At any moment of a program run there are 16 general purpose
registers visible to the program:

|RO[... |[R7 | R8[... |R13 [R14 [R15 |

» Some registers serve a special function in the processor:

R13: Normally used as a stack pointer — especially the
subroutine call instructions use this register as a
stack pointer

R14: Statusregister (st for short)

R15: Program counter

» The upper eight registers R8...R15 are always the same while
the lower set of eight registers is a window into a 256 - 8
register bank of 16 bit bus width.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Architecture
Registers
The status register R14
Input/Output

The status register R14

The status register is divided into two parts: The lower 8 bits are
the status bits reflecting the current processor state while the
upper 8 bits (rbank) are used to control the register bank circuitry:

| rbank [M|I[V|N[Z[C|[X][1]

1: Always set to 1

X: 1 if the last result was OxFFFF

C: Carry flag

Z: 1 if the last result was 0x0000

N: 1 if the last result was negative

V: 1 if the last operation caused an overflow
I: 1if an interrupt occured

M: If set to 1, maskable interrupts are allowed

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Architecture
Registers
The status register R14

Input/Output

» As already mentioned, the upper 8 bits of R14, called rbank,
control the register bank circuitry.

> Since there are 256 times 8 registers available as RO...R7, the
eight bits of rbank suffice to specify one out of these 256
pages as the actual register page to be used.

» To switch between register pages it is only necessary to
change the contents of rbank — normally this will be
accomplished by a simple ADD or SUB instruction.

» The multiple register banks are very handy in programming
subroutines since they remove the necessity of saving lots of
registers on entry and restoring them on exit of a subroutine.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Architecture
Registers
The status register R14
Input/Output

Input/Ouput

» All input/output operations of QNICE take place through a
memory mapped |/O system, so there are no special I/O
instructions as some other processors feature.

» The upper 1k word of memory is reserved for 1/O controllers

which can be easily accessed using normal instructions with
addressing modes referring to memory cells.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Instruction set basics

» QNICE utilizes 17 basic instructions, all of which (apart from
HALT, which takes no operands) are two operand instructions.

» Instructions like ADD RO, R1 will actually perform an
operation like R1 := R1 + RO — the only exceptions being

» the two shift instructions SHL and SHR where the first operand
specifies the number of places to be shifted and

> the four jump and branch instructions ABRA, ASUB, RBRA and
RSUB which only take a a destination and a condition code.

» All operands, apart from the condition code of a jump or
branch instruction, of course, can be specified using one out
of four possible addressing modes (Rxx, @Rxx, @Rxx++ and
@--Rxx).

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Instruction format

» Most of QNICE's instructions feature a single instruction
format, the only exceptions are the four branch and jump
instructions:

4 bit 4 bit 2 bit 4 bit 2 bit
opcode || dst rxx | dst mode || src rxx | sTrc mode

» The four jump and branch instructions use the following
instruction format:

4 bit 4 bit 2 bit 2 bit 1 bit 3 bit
negate select
opcode dst rxx dst mode mode condition condition

» The four jumps and branches ABRA, ASUB, RBRA and RSUB
have the corresponding mode bits 00, 01, 10 and 11
respectively.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

List of instructions

Instr Operands | Effect

HALT Halt the processor

MOVE src, dst | dst := src

ADD src, dst | dst := dst + src

ADDC src, dst | dst := dst + src + C

SUB src, dst | dst := dst - src

SUBC src, dst | dst := dst - src - C

SHL src, dst | dst << src, fill with X, shift to C
SHR src, dst | dst >> src, fill with C, shift to X
SWAP src, dst | dst := ((src << 8) & OxFF00) |
((src >> 8) & OxFF)

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

0O~ O WN R O é?
(@]

Instruction set basics

Instruction format
Instruction set and addressing modes List of instructions

Branches and subroutine calls

Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Opc | Instr Operands Effect

9 NOT src, dst dst := !src

A AND src, dst dst := dst & src

B OR src, dst dst := dst | src
C X0R src, dst dst := dst ~ src

D ABRA dest, [!Jcond | Absolute branch

D ASUB dest, [!Jcond | Absolut subroutine call
D RBRA dest, [!Jcond | Relative branch

D | RSUB dest, [!lcond | Relative subroutine call

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Branches and subroutine calls

The four branch and call instructions need some clarification:

» There are absolute and relative branches and subroutine calls.
Absolute branches and jumps will transfer the program
execution to an absolute address specified by the destination
operand of the instruction. Relative instructions will transfer
the program execution to the address which is the result of
the sum of the current program counter R15 and the
destination operand (using two's complement implements
backward jumps).

» The difference between branches and subroutine calls is that
branches just change the program counter, while subroutine
calls will push the current program counter to a stack before
performing the actual jump.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics

Instruction format
Instruction set and addressing modes List of instructions

Branches and subroutine calls

Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

» All branches and subroutine calls are conditional jumps — they
will be executed only if a certain condition is met.

» All conditions are specified in respect to the lower eight bits of
the status register R14. A branch like
ABRA dest, C

will only be taken if the C bit of R14 is set.

» To simplify programming it is possible to negate the status
register bit used as the control condition prior to its use (this
will only affect the evaluation of the condition).

ABRA dest, !C
will only branch when the C bit is not set.

» To allow unconditional jumps, the LSB of the status register
is always set!

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Addressing modes

All src and dst operands may be specified using one out of four
possible addressing modes. In particular these are the following:

Mode bits | Notation | Description

00 Rxx Use Rxx as operand

01 ©@Rxx Use the memory cell addressed by
the contents of Rxx as operand

10 @Rxx++ | Use the memory cell addressed by

the contents of Rxx as operand and
then increment Rxx

11 ©@--Rxx | Decrement Rxx and then use the
memory cell addressed by Rxx as
operand

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Using constant operands

Although there is no explicit addressing mode to specify the usage
of a constant as an operand, this can be realized by using R15 as
the address register as the following example shows:

» Set RO the the fixed value 0x1234 using MOVE:
MOVE @R15++, RO

This assumes that the memory cell following the MOVE
instruction will contain the value 0x1234. Using the QNICE
assembler an instruction like this can be specified as

MOVE 0x1234, RO

and the assembler will take care of filling the following
memory cell with the proper value.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Examples of the addressing modes

» Move the contents of RO to Ri:
MOVE RO, R1
» Move the contents of RO to the memory cell addressed by the
contents of R1:
MOVE RO, G@R1
» Using R1 as a stack pointer, push the contents of RO to the
stack:
MOVE RO, @--R1
» Using R1 as a stack pointer again, read the contents of the
top of stack back into RO:
MOVE @R1++, RO

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Examples of branches and subroutine calls

» Perform an absolute jump to a subroutine at location 0x1234:
ASUB 0x1234, 1
» This absolute subroutine call will take place unconditionally
since the 1 bit of R14 is always set.

> In addition to this the contents of the program counter R15
will be pushed to a stack using R13 as the stack pointer.

» To return from this subroutine it is only necessary to read the
old contents of R15 which have been pushed to the stack back
into R15:

MOVE @R13++, R15

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Instruction set basics
Instruction format
Instruction set and addressing modes List of instructions
Branches and subroutine calls
Addressing modes
Examples of branches and subroutine calls
Examples of binary coded instructions

Examples of binary coded instructions

The following examples may help in understanding the binary
representation of QNICE instructions:

Instruction Binary representation Hex
MOVE @--R13, R15 | 0001 [| 1111 [00 [1101 [11 0x1F37
ADD RO, @R1 0010 [| 0001 [01 [| 0000 | 00 0x2140
ASUB 0x1234, 1 1101 || 1111 [10 [01 [[0 [000 | 0xDF90
0001 0010 0011 0100 0x1234

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

0x1000

Code example:

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x0009

0x1BCO
0x0000
0x1BC1
0x1000
0x2040
0x4BC1
0x0001
0xDBCB
0x0004
0x0000

2.

i=0

LOOP

Code example Subroutines

/

MOVE 0x0000, RO

MOVE 0x1000, R1

ADD R1, RO
SUB 0x0001, R1

ABRA LOOP, !Z

HALT

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Code example Subroutines

Subroutines

» Most processors require the explicit backup of register
contents at the begin of a subroutine as well as a
corresponding restore at the end of the routine. This normally
involves the use of a stack which is time consuming due to the
necessary memory references.

» QNICE simplifies the backup and restore of registers by
utilizing the 256 register bank entries corresponding to the
lower eight registers RO...RT7.

» A normal subroutine for QNICE will use R13 as stack pointer
for storing the return address, R14 to control the register
bank, R8...R12 for passing arguments to the routine and
RO...R7 as working registers for the subrouine itself.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Code example

Typical subroutine structure

ROUTINE:

MOVE ..., RS
RSUB ROUTINE, 1
ADD 0x0100, R14

SUB 0x0100, R14
MOVE @R13++, R15

Subroutines

Setup subroutine parameters

Unconditionally jump to the subroutine
Continue with main program

Incr. the register bank pointer

Perform subroutine operations

Restore the register bank

Return to the calling program

Bernd Ulmann ulmann@vaxman.de

QNICEa nice 16 bit architecture

The assembler

The assembler

» Thanks to Thomas Kratz there exists a Perl based assembler
that is capable of reading QNICE assembler source files and
produces binary load files as well as corresponding listing files.

» The assembler as well as all other QNICE related information

and files is available at
http://www.vaxman.de/projects/qnice/qnice.html

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

The emulator

The emulator

» Currently a simple C written emulator exists as a proof of
concept.

» The emulator is available as source code at
http://www.vaxman.de/qnice/qnice.html

» The emulator features a rich command set (DEBUG, DIS,
DUMP, HELP, LOAD, QUIT, RESET, RDUMP, RUN, SET, SAVE,
STAT, STEP, VERBOSE) and extensive statistical features which

proved rather useful during the design and development of the
instruction set and addressing modes.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

The emulator

Using the emulator: Run the summation program

Load and disassemble the summation program:

Q> load sum.bin

Q> dis 0,9

Disassembled contents of memory locations 0000 - 0009:
0000: 1BCO MOVE 0x0000, ROO

0001: 0000
0002: 1BC1 MOVE 0x1000, RO1
0003: 1000

0004: 2040 ADD RO1, ROO
0005: 4BC1 SUB 0x0001, RO1

0006: 0001
0007: DBCB ABRA 0x0004, !'Z
0008: 0004

0009: 0000 HALT

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

The emulator

Show the register contents:

Q> rdump
Register dump: BANK = 00, SR = _______ 1

ROO-R04: 0000 0000 0000 0000
R0O4-R08: 0000 0000 0000 0000
RO8-ROc: 0000 0000 0000 0000
ROc-R10: 0000 0000 0001 0000

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

The emulator

Run the program and repeat the register dump:

Q> run
Q> rdump
Register dump: BANK = 00, SR = ___Z_1

ROO-R04: 0800 0000 0000 0000
RO4-R08: 0000 0000 0000 0000
RO8-ROc: 0000 0000 0000 0000
ROc-R10: 0000 0000 0009 000a

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

The emulator

Print the statistics of this run:
Q> stat
12291 instructions have been executed so far:

INSTR ABSOLUTE RELATIVE INSTR ABSOLUTE RELATIVE

HALT: 1 (0.01%) MOVE: 2 (0.02%)
ADD : 4096 (33.33%) ADDC:: 0 (0.00%)
SUB : 4096 (33.33%) SUBC: 0 (0.00%)
SHL : 0 (0.00%) SHR : 0 (0.00%)
SWAP: 0 (0.00%) NOT : 0 (0.00%)
AND : 0 (0.00%) OR : 0 (0.00%)
XOR : 0 (0.00%) ABRA: 4096 (33.33%)
ASUB: 0 (0.00%) RBRA: 0 (0.00%)
RSUB: 0 (0.00%)
READ ACCESSES WRITE ACCESSES

MODE ABSOLUTE ~ RELATIVE MODE ABSOLUTE ~ RELATIVE
X 12288 (42.85Y%) rx 8194 (28.57%)
orx : 0 (0.00%) Qrx : 0 (0.00%)
Qrx++: 8194 (28.57%) Qrx++: 0 (0.00%)
@--rx: 0 (0.00%) Q--rx: 0 (0.00%)

nd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Future plans

Future plans

» The emulator has shown the power of the QNICE instruction
set and its four addressing modes.

» The register bank feature is most useful in subroutines and
saves lots of memory accesses for saving and restoring register
contents.

» The features described in these slides can be assumed as
being fixed and may serve as the basis for hardware
implementations of QNICE.

» The following months will see a TTL based implementation of
QNICE as well as maybe a FPGA based implementation.

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

Future plans

Bibliography

[§ Bill Buzbee's Magic Processor has been described extensively
at http://www.homebrewcpu.com

[@ Bernd Ulmann, NICE — an elegant and powerful 32-bit
architecture, Computer Architecture News, OCT-1997.

@ Bernd Ulmann, The NICE Processor Pages,

http://www.vaxman.de/projects/nice/nice.html

Bernd Ulmann ulmann@vaxman.de QNICEa nice 16 bit architecture

	Introduction
	Goal
	Basics

	Architecture
	Registers
	The status register R14
	Input/Output

	Instruction set and addressing modes
	Instruction set basics
	Instruction format
	List of instructions
	Branches and subroutine calls
	Addressing modes
	Examples of branches and subroutine calls
	Examples of binary coded instructions

	Code example
	Subroutines

	The assembler
	The emulator
	Future plans

