NICE

an elegant and powerful 32-bit architecture

B. Ulmann

ulmann@fafner.zdv.uni-mainz.de

September 8, 1997

Abstract

The architecture described in the following articel is a direct
successor of u—EP-1 (cf. [1]) and was developed by the au-
thor and Robert Linden (Universitit Bonn, FB Informatik).
NICE is a 32-bit processor, utilizing a fixed instruction for-
mat, a register set of sixteen general purpose registers and
an extremely powerful but simple and easy to use instruction
set which is supported by a variety of addressing modes. The
smallest direct addressable data item in main memory is the
32-bit machine word thus utilizing a simple addressing scheme
for instruction operands.

The aim of this design is reflected by the acronym ”NICE ”
which means ”NICE is charmingly elegant” (Robert Linden).

At the moment NICE contains neither any hardware sup-
port for memory management nor floating point instructions,
but using the instruction selection scheme described below
features like these can be added without changing the overall
machine design.

1 Registers

NICE contains a register set of sixteen registers,
RO...R15, featuring a predecrement and postincrement
capability which can be used for implementing stack like
structures etc. R1...R12 are true general purpose regis-
ters, while RO, R13...R15 have special meanings as fol-
lows:

RO: This register contains the hardcoded value 0 which
is returned by each read operation. It can be also
used as a destination register but writing to R0 will
discard the value to be written.

R13: After receiving a non masked interrupt request,
this register (denoted by IR in the following) con-
tains the appropriate return address.

R14: This special register serves as the system status
register, abbreviated SR.. It contains the following
status flags’ and address fields as shown in figure 1:

INote that it is possible to inhibit the modification of the status

1 X c 7 N v M I Address of interrupt-
vectorstructure

31 30 29 28 27 26 25 24 23 0

Figure 1: The SR structure

1 — Alway TRUE, used in conditional instruction
execution, see section 2.

X — TRUE if the result obtained by the last opera-
tion was $SFFFFFFFF.

C — contains the carry of the last ALU/SHIFT-
instruction.

Z — A value of 1 denotes that the last result was
Zero.

N — TRUE if a negative result was generated, i.e.
the most significant bit of the result value was
set.

V — TRUE denotes an overflow condition.

M — TRUE if a maskable interrupt occured, see sec-
tion 4.

I — The interrupt-control-flag, if this flag 1s set,
maskable interrupts are enabled, else disabled.

And the

address of the interrupt vector structure:
This value is used as a pointer to the beginning
of the interrupt vector structure located in
main memory which is used for interrupt
processing, see section 4.

R15: This register is used as the program counter for
NICE and is denoted by PC.

It should be emphasized that — despite the special pur-
pose of the above mentioned four registers — all of the six-
teen registers R0...R15 of NICE can be used in every in-

struction context without restrictions. This feature plays

flags by an ALU- or SHIFT-instruction using a special flag when
coding the desired operation.

g:lgdltlon Opcode Destination Source1 Sour062
31 28 27 21 20 14 13 7 6 Q

Figure 2: General instruction format

3 select bits |/

Figure 3: Condition coding

a keyrole for the powerful but simple programming con-
cept of NICE.

2 Instruction coding

NICE features a fixed format instruction coding scheme,
shown in figure 2, thus simplifying the necessary hardware
for instruction decoding. Instructions have a length of 32
bits (starting at word boundaries in the main memory
since the 32-bit machine word is the smallest addressable
item). Generally each instruction is composed of the fol-

lowing five fields:

e The condition field, (vefer to figure 3) which is used
to select one out of the eight most significant sta-
tus register bits (for a description of these flags see
section 1) by using bits 31...29 of the instruction
word as selector field. Depending on the value of the
status flag selected this way, the instruction can be
executed or skipped. An instruction is executed only,
if the desired bit of SR is set. To simplify program-
ming, bit 28, the /-bit, of the instruction can be used
to negate the result of testing the condition flag. The
1-bit at position 31 of the status register provides a
convenient way for coding instructions to be always
executed.

o The deselect and opcode field: NICE instructions are
grouped into categories — at the moment there exist
the following three instruction groups:

1. ALU-instructions,
2. SHIFT-instructions and

Mode bits
2 1 0

Register number

4 bits

Figure 4: Operand coding

3. the HALT-instruction.

To select a particular instruction out of these groups,
a deselection scheme is used in the first stage of
instruction decoding the following way?:

if bit 27 is cleared then

executed ALU-instruction

else
if bit 26 is cleared then
execute SHIFT-instruction

else
HALT-instruction

endif
endif

The remaining bits of the deselect and opcode field are
used as an opcode field for controlling the functional
unit selected by the above scheme.

e Three fields for coding one destination and two
source operands. The format of each of these fields
is shown in figure 4. The three mode bits are used
to specify the desired addressing mode and are
interpreted as outlined in the following table, while
the remaining four bits select one out of the sixteen
available registers:

mode bits | destination source

2 1 0 | operand operand

0 0 0 |Rxx Rxx

0 0 1 | Rxx-—- --Rxx

0 1 0 | Rxx++ Rxx++

0 1 1 | @#<const>[Rxx]| | #<const>[Rxx]

1 0 0 | @Rxx @Rxx

1 0 1 |@-Rxx @--Rxx

1 1 0 | @Rxx++ @Rxx++

1 1 1 | @f<const>[Rxx] | @#<const>[Rxx]

Mode bit 2 is used to select indirect addressing,
which is denoted by the symbol @. In this case, the
value of the operand is used as a pointer to the main
memory location to be used as the actual operand.
In the coding scheme shown above are two exceptions
to be noted:

2Note that this deselection scheme provides an easy way for ex-
tending the NICE instruction set.

000 0001 | 111 | 1111 | 111 1111

destination s s

Figure 5: Addressing mode coding example

— Coding a constant as the destination operand
of an instruction is quite meaningless and thus
forced to be interpreted as a pointer to the
destination location, i.e. coding #<const> in
the destination of an instruction is equal to
@4t <const>.

— Selecting a register in the predecrement mode as
the destination of an operation would have no
effect on the value to be stored, so in this special
case the value stored in the desired register is
postdecremented!

Note that, when coding a constant value as an
operand, there always will be added the value of
the register selected by the four register number bits
prior to any other operation taking place on this
operand! This allows a powerful indexed address-
ing capability and is the main reason for the special
role of R0O. Using this register in conjunction with
constants allows the usage of a pure constant value
without interfering with actual register contents.

The following example may show how the address
resolution scheme implemented in NICE actually
works: Two values have to be added which are lo-
cated $10 and $11 memory locations after the in-
struction itself, while the result should be stored in
R1. This could be accomplished by coding the in-
struction add r1,@#10[PC],@#$11[PC]. The three
destination and source operand fields then contain
the values shown in figure 5 while the constants $11
and $10 are stored in the two memory locations di-
rectly following add-instruction itself3.

Utilizing this addressing feature, writing position in-
dependent code is extremely simplified by using the
program counter R15 in conjunction with constant
address pointers. It is important to notice that the
PC points to the actual instruction location during
the whole execution cycle!

3Constants used as operands for instructions are stored in the
memory locations directly following the instruction itself begin-
ning with the first source operand and ending with the destination
operand.

Condition 0|C| M Opcode Dest. Source Source
field 1 2

31 28 2726 25 24 21 20 14 13 7 6

Figure 6: ALU-instruction format

3 Instructions

All mnemonics used in the following sections are identi-
cal to those implemented by the NICE crossassembler
written by Robert Linden.

3.1 ALU-instructions

NICE implements the following sixteen different ALU-
instructions which are divided into arithmetic and logic
functions:

Opcode | Mnemonic | Description arithmetic/
logic
0000 move d = s a
0001 sub = 51 — 89 a
0010 mdbl d=s1+(s1As2) | a
0011 add d =51+ sy a
0100 dbl d=2s; a
0101 dec d=s51—1 a
0110 not d = -39 |
0111 nor d=—(s1Vs2) |
1000 1and d =81V s |
1001 nand d = —(s1 N\ s2) |
1010 Xxor d=51 D s9 |
1011 ior d =81V 89 1
1100 Xnor d=—(s1 & s9) 1
1101 and d =51 A 89 1
1110 one d=1 1
1111 or d =51V 89 1

All instructions are coded as shown in figure 6. The two
bits denoted by C and M control the usage of the input
carry and the modification of the status flags contained
in SR.

If the M-bit (the modify-bit, bit 25) is set, the status
flags are affected by the result obtained from the current
instruction. If bit 26, the C-flag, of an ALU-instruction
is set and the instruction to be executed is one of the
arithmetic operations, the result is incremented by one if
the carry bit in the status register SR is set. (Logical
ALU-instructions are not affected by this mechanism.)*

4As a result of the instruction interpretation scheme described
above, a value of zero is treated as mowve 70,70 — some kind of a
nop-instruction.

Condition {0 M Opcode Dest. Source Source Condition 1)1
field field
31 28 2726 25 24 21 20 14 13 76 31 28 27 26

Figure 7: SHIFT-instruction format

3.2 SHIFT-instructions

Additional to the 16 ALU-instructions there are sixteen
SHIFT-instructions which can be executed on NICE:

Opcode | Mnemonic | Alternative
0000 0<0 shl
0001 0<1

0010 0<C

0011 C<0

0100 C«1

0101 C<C

0110 <<< rol
0111 C<< bpl
1000 0>0 shr
1001 1>0

1010 C>0

1011 0>C

1100 1>C

1101 C>C

1110 >>> ror
1111 >>C bpr

To clearify the notation used in the table above con-
sider the SHIFT-instruction 0<0: This is interpreted as
a left shift filling up with 0 and discarding the most sig-
nificant bit after each step. In exactly the same manner
1>0 is executed as a right shift, filling up with 1 and
discarding the least significant bit after each step. The
character C denotes the carry flag in the status register
SR. <<< and >>> are used to specify circular left and
right shifts respectively. C<< and >>C, on the other
hand, denote circular left and right shifts with the most
(least) significant bit copied to the carry bit after each
step.

During a SHIFT-operation the source operand s; is
shifted sy times. These instructions are coded as shown
in figure 7, where the M-bit controls the modification
of the flags contained by the status register as described
in section 3.1, with the exception that SHIF T-operations
using the carry bit as a destination will modify this flag
regardless of the state of the M-bit!

3.3 The HALT-instruction

This special instruction is used to halt the entire processor
— a restart is possible only by sending a reset pulse to the
hardware. Tts format is depicted in figure 8.

Figure 8: HALT-instruction format

SR Status flags

Interrupt vector table address

31 24 23 | 0
I
L----1
I
|
___________________ Y
Interrupt | - - - - _____________] r ‘@
vector | - _ _______________J] : A
table © 7 ---- b--a

(from device)

e Interrupt

service

routine

Main memory

Figure 9: Interrupt processing scheme

4 Interrupts

NICE supports two basic types of interrupts: maskable
and nonmaskable interrupts. Maskable interrupts can be
disabled by clearing the I-bit of the status register SR,
while nonmaskable interrupts can not be inhibited. Be-
sides this difference, both types are serviced the same
way:

A device requests an interrupt by changing the state of
the IRQ- (for maskable interrupts) respectively NMI-signal
from high to low. If the interrupt is accepted by NICE,
this is signalized to the requesting device by asserting a
low-level on the appropriate IGT- /NMIGT-line depending
on the interrupt type which was requested. In a further
step, the external device sets the lower eight bits of the
data bus to the desired interrupt number — availability of
this data is signalized to NICE by a special control line.
This value is read by the NICE-hardware and used as
the eight least significant bits of a pointer to the memory
location containing the address of the requested interrupt
service routine. The upper 24 bits of this pointer are
obtained from the bits 0...23 of the status register.

To allow a proper termination of the interrupt handler
routine, the current value of the program counter R15 is
stored in R13, which can be used by the service routine

Interrupt number

to return the program flow to the interrupted program.
This procedure is shown in figure 9.

The occurence of a maskable interrupt sets the M-bit
of the status register, which enables the interrupt handler
routine to distinguish between the two interrupt types.

5 Examples

The following section gives a short description of the syn-
tax used by the NICEcrossassembler written by Robert
Linden, which is used to compile the examples below:

5.1

To code NICE-instructions, the mnemonics for ALU-
and SHIFT-operations as described in the preceeding sec-
tions are used. If an instruction shall be able to change
the status flags contained in the status register R14,
the M-bit is set by coding <M> after the instruction
mnemonic itself. The same syntax is used for controlling
the value of the C-flag used in ALU-instructions. To set
both flags, <CM> can be coded.

Constants are detected by a leading #-sign — this is
also necessary when using a label or a constant defined
by an .equ-statement!

Indirect addressing is denoted by a @, while indexed
addressing is coded by @#<const>[Rxx]. The ”;”-sign
indicates a comment.

77?”denotes a conditional executed instruction and is
followed by the name of the status flag to be tested. The
sign 717 denotes that the value of the flag selected by 777
has to be negated prior to testing the condition.

Coding format

5.2 A 32-bit multiplication routine

The following routine allows multiplication of two 32-bit
integer values using a simple shift-and-add algorithm:

;mult_32

;calculates value_1l*value_2
;and stores the result in
;the memory locations
;result_lo and result_hi.

3

.org $0
;load operands:
mov ri,0#value_1

mov r2,0#value_2
;clear all used registers:

mov r3,r0

mov r4,r0

mov r6,r0

;multiplication loop:

loop: 0>c<m> ri,r1,#1 ;rightshift to carry

?!c mov ri15,#skip ;zero? => skip add
add<m> r3,r3,r1 j;add to result_lo
add<c> r4,r4,r5 ;add to result_hi

skip: c<0 r2,r2,#1 ;double value_2_lo
0<c r5,r5,#1 ;double value_2_hi
mov<m> r6,—--r6 ;decrement counter

?!z mov ri5,#loop ;not done? => loop

;store result:

mov Q#result_lo,r4
mov Q#result_hi,rb
halt

value_1: .dat $0

value_2: .dat $0

result_lo:.dat $0
result_hi:.dat $0

5.3 An interrupt service routine

The following code fragment shows how interrupt service
routines can be implemented on NICE®:

;main program:
B
;initialize r12 which serves as a stack

; pointer:
mov ri12,#start_stack
;initialize the vector interrupt table pointer:
0<0 ri4,#ivt,#8
;set the interrupt enable flag:
or ri4,r14,#$0200
;code of main
halt ;end of main

;
;first interrupt routine:

3

ihandler_0:

;save return address and status register value:
mov Qri2++,r13
mov Qri2++,r14

;code of the
;interrupt handler
;restore status register and program counter:
move ri4,0--ri12

move ri5,0--r12

;end of the interrupt handler.

3

5The assembler directive .ivtable garanties that the following
data starts at a 256 machine word boundary, so the upper 24 bits
of the associated label can be stored directly to the interrupt vector
structure address field of the status register SR..

.ivtable References

ivt: .dat #ihandler_0
.dat #ihandler_ 1 [1] Ulmann, Bernd: p-EP-1, a simple 32-bit architec-

;and so on. ture, Computer Architecture News, 6/95.

start_stack:
.reserve $1000 ;reserves the

;following $1000

;memory locations

It should be noted that the assembler allows the defini-
tion of some kind of macros thus avoiding the necessity to
code things like or ri14,r14,#$0200 over and over again.
This operation could be defined as for example si — set
interrupt flag. In the same way pseudoinstructions like
bgi (begin interrupt handler) and rti (return from inter-
rupt) could be defined, serving as aliases for instruction
sequences like

mov Qri2++,r13
mov Qri2++,ri14

and

mov ri4,0--ri12
mov ri5,0--r12.

5.4 A self replicating program

The purpose of the following program is to create a copy

of itself:
mov ri,ri5 ;get start and
mov r2++,#end ;end location.
mov r3,r2
loop: ;copy one word:
mov Qr2++,0ri++
xor<m> r0,r1,r3 ;ri=r3? => set z
?!z mov ri5,#loop ;not done? => loop
end: halt

6 Conclusion

It may be concluded that NICE extends the capabilities
of p—EP—-1 in a way that leads to a very powerful 32-bit
computer with a wide range of possible applications. Due
to its simple assembly language this architecture is well
suited for educational purposes as well as for small control
applications.

Further steps are an implementation of the NICE ar-
chitecture using FPGAs instead of discrete TTL-circuits
asin u—EP-1, and the development of a common interface
bus.

