u—EP-1

a simple 32-bit architecture

B. Ulmann
ULMANN@MZDMZA.ZDV.UNI-MAINZ.DE

October 13, 1995

Abstract

This article describes a very simple but quite powerful
32-bit architecture ideally suited for experimental and ed-
ucational purposes in computer architecture design. Tt
employs a very orthogonal instruction set in conjunction
with 16 general purpose registers and a simple interrupt
capability. It was developed at the University of Mainz,
Germany and a prototype using standard T'TL-circuits is
being developed — large parts of the microcode are written

and simple assembler and an emulator written in FOR-
TRAN already exists.

1 Introduction

One of the main design topics for p—EP-1 (micro-
programmed experimental processor) was its simple
realisation using techniques like TTL-circuits etc., so
it could be successfully employed for educational pur-
poses in computer science classes. Another very im-
portant point is the very orthogonal instructionset
— it may be called a RISC-architecture in many re-
spects. All instructions are of the same structure —
there are no exceptions in coding operands, address
modes and so on, which results in a very simple in-
struction decoder design. There are no mechanisms
for memory management or floating point (but it
should not be impossible to build appropriate exten-
sions).

2 General Purpose Registers
There are 16 general purpose registers in pu—EP-1

named R0...R15. The first thirteen of these registers
are of real general purpose — they have no special

‘ X ‘ C ‘ 7 ‘ N ‘ I ‘ Interrupt-address ‘
31 30 29 28 27 26 0

Figure 1: The status register — R1/

meaning to the operation of the processor. R15 is
used as the program counter PC; R1/ resembles the
status register SR and R13 is used in processing in-
terrupts. When an interrupt occurs it is loaded with
the appropriate return address which can be pushed
onto a stack by the interrupt routine itself.

The four most significant bits (31...28) of SR are
used as condition flags. They are: comparison bit X,
carry bit C, zero flag 7 and negative flag N. These
bits are modified by ALU-operations (the carry bit
handling is a little more complex — see section 3.1
of this article) and SHIFT-operations. They can be
used for programflow-control etc. by utilizing the
condition-code-field of the instructions. Bit 27 of the
SR is the interrupt-enable bit. If it is set, interrupts
are enabled, else disabled. Bits 26...0 of this register
are used for the interrupt-address — this is the biggest
exception in the whole design because the address
of an interrupt routine is only 27 bits in length, so
it cannot use the entire range of memory addresses.
Figure 1 depicts the structure of the status register

SR.

3 Instructions

All instructions (not using constants) are 32 bits wide
and of the structure shown in figure 2. Bits 31...28



[SEL|"[/]OPC [ M; [OP5] M, [OP,] M; [OP]
3130292827 212018171413 11107 6 4 30

Figure 2: General instruction format

Bit 2 Bit 1 Bit 0 cleared Bit 0 set

0 0 Rxx Q@Rxx

0 1 -Rxx @--Rxx
1 0 Rxx++ QRxx++
1 1 const Qconst

Figure 3: Addressing modes of operands

are used to specify the condition under which the
instruction is executed. If bit 29 (the ™bit) is cleared
the instruction will always be executed. If it is set the
instruction will only be executed if the condition flag
of SR, selected by the value stored in bits 31 and 30
of the condition field of the instruction, is set. This
implies that bit 28 was cleared — if it is set it inverts
the selected flag bit before using it in this process.

Each instruction can use up to three operands
coded in bits 0...20. Every operand consists of a 4
bit operand-field which can select any of the 16 GPRs
and a 3 bit mode-field to store the desired addressing
mode. Figure 3! shows the possible modes. If the
use of a constant is coded in the mode-field of the
operand, the value of the operand-field is neglected
and the constant is loaded from the next storage loca-
tion following the instruction. The program counter
is then incremented.

Bits 27...21 are used as some kind of opcode-field.
This name however is not really appropriate for our
design because this field is not fully decoded to deter-
mine the instruction. Instructions are grouped into
ALU-, SHIFT- and the HALT-instructions. If bit 27
is cleared the instruction uses the ALU of p—EP-1. If
it is set, bit 26 is used to distinguish between SHIFT-
instructions (bit 26 cleared) and HALT (set).

The @-sign denotes that the argument is used as a pointer
to the desired operand.

Instruction logic-mode mnemonic
0000 1A NOT
0001 '(AIB) NOR
0010 A &B
0011 0 ZERO
0100 (A& B) NAND
0101 'B
0110 A" B XOR
0111 A& !B
1000 'A|B
1001 (A" B) XNOR
1010 B
1011 A& B AND
1100 1 ONE
1101  Al'B
1110 AlB OR
1111 A MOVE

Instruction arithmetic-mode mnemonic
0000 A
0001 AB
0010 Al'B
0011 -1
0100 A+ (A & IB)
0101 (AB) + (A & 'B)
0110 A-B-1 SUB
0111  (A&!B)-1
1000 A +(A& B)
1001 A+ B ADD
1010 (AI'B)+ (A & B)
1011 (A&B)-1
1100 A+ A 2A
1101 (AB)+A
1110 (A|'B) + A
1111 A-1 DEC

Figure 4: AL.U-instructions and abbreviations



Bit  Val Operation Comparison
X 1 SUBcc A= (BMINUS )
1 XNOR A=B
1 XOR A!'=B
C 0 SUB cc A<B
1 SUB cc A>=B
0 SUB cs A<=B
1 SUB cs A>B

Figure 5: Compare instructions

3.1 ALU-instructions

The ALU of p-EP-1 uses the well known 7/ LS
181 chips together with 74 LS 182 carry-lookahead-
generators. These chips implement 16 arithmetic and
16 logic instructions shown in figure 42. To select
one particular instruction out of these 32 possibili-
ties, bits 25...21 of the opcode-field are used®. These
bits are directly fed to the appropriate ALU-control
lines. The remaining bit 26 is the carry-control-bit
CCB. Only if it is set the actual instruction is al-
lowed to modify the carry bit of the SR*. This is
coded by (C) following the desired instruction, for
example ADD(C) is allowed to alter the value of
the C-bit while a simple ADD is not. The bits N, Z
and X of the status register are affected by all ALU-
instructions. The X-bit corresponds to the product of
all 8 A=B-outputs of the 4-bit ALU-chips. It can be
used to implement some compare-instructions shown
in figure 5°.

2As one can easily see there are ALU-instructions which
do not need all of the three possible operands — some even
produce only a result.
prevent unused operands from being fetched by the microcode.
This is implemented using a 32 by 2 bit PROM where the 2
bits correspond to the 2 input operands of the instruction. It
is addressed using the 5 ALU-control bits and returns a value

So there has to be a mechanism to

of one if the operand has to be fetched and zero else. Such
circuitry is not necessary for other types of instructions such as
SHIFT and HALT since SHIFT always needs three operands
and HALT needs none.

®Bit 25 distinguishes between arithmetic (cleared) and logic
(set) mode.

*The used ALU-chip-set employs an active-low carry as
both input- and output-carry. To simplify programming, the
C-bit of the SR is inverted before fed into the ALU. The gen-
erated carry is also inverted before it is stored in the SH.

5cc denotes carry cleared, sc carry set.

Output:
discard or
Carry

| discard output | out—C || Source

Mode 0 3 0

Mode 1 4 1

Mode 2 5 Carry
Mode 6 Mode 7

Lo Lo

Figure 6: The 8 basic shift operations

3.2 SHIFT-instructions

The shifting unit is capable of performing 8 different
shift-operations — each of these can be done in both
shifting directions so there are 16 operations which
can be coded in a shift-instruction using bits 24...21.
Bit 21 denotes the desired direction — the remaining
three bits are used to select one of the 8 basic modes
shown in figure 6.

3.3 HALT

This instruction is detected by bit 27 and 26 set. It
halts the entire processor and enters a microcode-
loop which can be left on power-up or reset only or
by flipping the start-switch on the console panel.

4 Basic programming concepts

As you will have noticed there are no special instruc-
tions for program-flow-control such as BRANCH,
JUMP, TEST and other operations. They are not
even necessary in this concept because all of them
can be simply rebuilt by using ALU-instructions, e.g.
MOVE, ADD etc. Because the execution of each in-
struction can be made dependend on the value of
one of the 4 condition-flags of the status register SR,
conditional jumps or branches are also implemented
using ADD, MOVE etc. instructions. If you want
to jump to address $1234 you could simply write
MOVE $1234, R15. If this instruction is to be per-
formed only if the carry-bit is set, you could code "C
MOVE $1234, R15. The sign ~ denotes that the



condition-field of the instruction is to be used in the
instruction. If the jump should only take place if the
(-bit is cleared it must be written as ~/C MOVE
$1234, R15. Jumps relative to the actual value of
the program counter can be implemented using the
ADD-instruction and so on...

4.1 Programming example

The following little program is used to add two vec-
tors giving a third one. The start-addresses of the
two input vectors are stored in R0 and R1, the start-
address for the resultant vector is supplied in R2.
The end-address of the first vector 4+ 1 can be found
in R3.

L1: ADD @RO++, Q@R1++, QR2++
XNOR RO, R3 ;SET X IF RO==R3
“/X MOVE #L1, R15 ; DO ... LOOP

HALT

4,2 Stacks

Stacks can be implemented in an easy way because of
the autoincrement and -decrement feature of y—EKP-
1. There is no designated stackpointer — each register
can be used for this purpose as the following instruc-
tions may show: In the following R12 shall be used
that way. To push a value onto this stack you could
write MOVE <source>, @--R12. The counter-
part to this instruction would be a pop which can
be written as MOVE @QR12++, <destination>.
The lack of a designated stackpointer is the reason
for using R13 as an interrupt-return-address-storage.
The interrupt routine itself is responsible for pushing
this address onto some stack-structure.

5 Interrupts

Interrupts are implemented in a very simple yet crude
way in u—EP-1. There are two kinds of interrupts:
simple interrupts, which result in a jump to the lo-
cation coded in the lower 27 bits of the status regis-
ter. And vector interrupts where the desired jump-
address is put onto the data-bus by the external de-
vice when the interrupt is accepted by the processor.

All interrupts are maskable and there is no
priority-system for then. This has to be accomplished

in software. Interrupts are disabled if the I-bit of the
SR is cleared. If an interrupt occurs and the [-bit is
set, the following steps take place:

First the Lbit of the SR is cleared so that other
interrupts can not take place at this time. After this
the interrupt is granted by the processor using a spe-
cial control line on the bus. Then the actual value of
R15, the program counter, is copied to B 13 to be used
as areturn address at the completion of the interrupt-
routine. In the last step the P('is loaded with the
address of the desired routine. This is either obtained
from the lower 27 bits of the SR (if it is a non-vector-
interrupt), or read from the data-lines of the bus,
where it was placed by the interrupting device after
receiving the grant-signal (vector-interrupt).

Then it is a matter of the routine itself to store the
contents of registers, which will be modified during
the run of this program part, and the content of R13.
If this is done the I-flag can be set so that other
interrupts can occur if desired. Finally the interrupt-
routine restores all previously saved register-contents
and then performs a jump to the appropriate return-
address.

6 Realisation

The actual p—KP-1 will be built around a single
32-bit wide internal data-bus which simplifies cir-
cuit design and construction. Figure 7 shows a
block diagram of the actual implementation®. The
console-panel enables the user to examine selected
memory-addresses or registers and to deposit val-
ues there. The misc-box in figure 7 denotes some
miscellaneous hardware such as a scratch register
used for panel-operation, an up-down-counter for
the autoincrement/-decrement feature, the clock-
generator and some glue-logic for the micropro-
grammed control unit not shown in the picture.
The microprogrammed control unit employs a sim-
ple horizontal microword which directly controls the
various system components. It has 64 condition-
inputs (there is room left for future extensions) which
can be used to control microprogramflow in a man-

®In this figure RFILE denotes the registerfile, containing
the 16 GPRs, IREG is the instructionregister with decoding
logic, PIF and PNL are panel-interface and the console-panel
and PBI depicts the peripheralbus-interface.



PNL P-bus mem| i/o

PIF PBI etc
internal bus

| |
ALU IREG

RFILE SHET misc

Figure 7: Implementation

ner quite similar to the p—KEP-1 assembler. FEach
microinstruction contains a condition field to select
one of these 64 input lines. The first line is tied
to logic 1 so that unconditional jumps are possible
to allow simple sequential program flow. There are
two address fields in each microword — the first con-
tains the address of the next microinstruction, which
has to be executed if the condition was false, the
second the address for a true condition line. The
address-multiplexer is directly controlled by the se-
lected condition-line, its output is wired to the input
of the microaddress-register.

As simulation runs have shown, it may be con-
cluded that u—EP-1 is a quite powerful architecture
and easy to implement, so it seems to be really well
suited for experimental and educational purposes in
the field of computer architecture.



